On the influence of humidity on the breakdown strength of air---with a case study on the PDIV of contacting enameled wire pairs

Raphael Färber, Ondrej Sefl, Christian M Franck
{"title":"On the influence of humidity on the breakdown strength of air---with a case study on the PDIV of contacting enameled wire pairs","authors":"Raphael Färber, Ondrej Sefl, Christian M Franck","doi":"10.1088/1361-6463/ad0b53","DOIUrl":null,"url":null,"abstract":"Abstract The partial discharge inception voltage (PDIV) in contacting enameled wire pairs exhibits a marked decrease with increased air humidity. While existing literature mentions several potential mechanisms for this reduction, a comprehensive quantitative assessment of the associated effects is lacking. This research paper addresses this knowledge gap by providing a quantitative estimation of the combined impact of water on the gas's ionization yield (effective ionization coefficient) and the modification of the gap electric field caused by water absorption into the bulk of the insulating coating and the associated microscopic and macroscopic polarization processes (dielectric permittivity). However, a comparison of the theoretical predictions with experimental data reveals that these factors alone cannot fully account for the observed reduction in PDIV. Therefore, the study explores additional mechanisms mentioned in the literature, with particular focus on the development of a semi-conductive layer on the insulation coating in humid atmospheres. The numerical simulations of the surface charge dynamics within this layer suggests that the frequency-dependent decrease in PDIV under high-humidity atmospheres can indeed be attributed to the modification of the gap electric field due to the accumulation of surface charge in the semi-conductive layer.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":" 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad0b53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The partial discharge inception voltage (PDIV) in contacting enameled wire pairs exhibits a marked decrease with increased air humidity. While existing literature mentions several potential mechanisms for this reduction, a comprehensive quantitative assessment of the associated effects is lacking. This research paper addresses this knowledge gap by providing a quantitative estimation of the combined impact of water on the gas's ionization yield (effective ionization coefficient) and the modification of the gap electric field caused by water absorption into the bulk of the insulating coating and the associated microscopic and macroscopic polarization processes (dielectric permittivity). However, a comparison of the theoretical predictions with experimental data reveals that these factors alone cannot fully account for the observed reduction in PDIV. Therefore, the study explores additional mechanisms mentioned in the literature, with particular focus on the development of a semi-conductive layer on the insulation coating in humid atmospheres. The numerical simulations of the surface charge dynamics within this layer suggests that the frequency-dependent decrease in PDIV under high-humidity atmospheres can indeed be attributed to the modification of the gap electric field due to the accumulation of surface charge in the semi-conductive layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湿度对空气击穿强度的影响——以接触漆包线对的PDIV为例
接触漆包线对的局部放电起始电压(PDIV)随空气湿度的增加而显著降低。虽然现有文献提到了这种减少的几种潜在机制,但缺乏对相关影响的全面定量评估。本研究论文通过提供水对气体电离率(有效电离系数)的综合影响的定量估计,以及由水吸收到绝缘涂层主体和相关的微观和宏观极化过程(介电常数)引起的间隙电场的修改,解决了这一知识空白。然而,理论预测与实验数据的比较表明,这些因素本身并不能完全解释观察到的PDIV减少。因此,该研究探索了文献中提到的其他机制,特别关注在潮湿大气中绝缘涂层上的半导电层的开发。该层内表面电荷动力学的数值模拟表明,在高湿大气下,PDIV的频率依赖性下降确实可以归因于由于表面电荷在半导电层中积累而引起的间隙电场的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The study of N-polar GaN/InAlN MOS-HEMT and T-gate HEMT biosensors Magnetic levitation of nanoscale materials: the critical role of effective density Ammonia Cracking for Hydrogen Production using a Microwave Argon Plasma Jet UV irradiation assisted low-temperature process for thin film transistor performance improvement of praseodymium-doped indium zinc oxide Dynamic Mode Decomposition for data-driven analysis and reduced-order modelling of E×B plasmas: I. Extraction of spatiotemporally coherent patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1