{"title":"A Spin Field Effect Transistor Based on a Strained Two Dimensional Layer of a Weyl Semimetal","authors":"Rahnuma Rahman, Supriyo Bandyopadhyay","doi":"10.1088/1361-6463/ad098a","DOIUrl":null,"url":null,"abstract":"Abstract Spin field effect transistors (SpinFET) are an iconic class of spintronic transistor devices that exploit gate tuned spin-orbit interaction in semiconductor channels interposed between ferromagnetic source and drain contacts to elicit transistor functionality. Recently, a new and different type of SpinFET based on gate tuned strain in quantum materials (e.g. topological insulators) has been proposed and may have interesting analog applications, such as in frequency multiplication, by virtue of its unusual oscillatory transfer characteristic. Here, we propose and analyze yet another type of SpinFET in this class, which may have a different application. It is based on gate-tuned strain in a Weyl semimetal, with the strain modulating spin interference. Because the operating principle is non-classical, the channel conductance shows oscillatory dependence on the channel length at zero gate voltage. Furthermore, the transconductance can switch sign if the channel length is varied. This latter feature can be exploited to implement a complementary device like complementary metal oxide semiconductor (CMOS) by connecting two such SpinFETs of slightly different channel lengths in series. These unusual properties may have niche applications.","PeriodicalId":16833,"journal":{"name":"Journal of Physics D","volume":" 36","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad098a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Spin field effect transistors (SpinFET) are an iconic class of spintronic transistor devices that exploit gate tuned spin-orbit interaction in semiconductor channels interposed between ferromagnetic source and drain contacts to elicit transistor functionality. Recently, a new and different type of SpinFET based on gate tuned strain in quantum materials (e.g. topological insulators) has been proposed and may have interesting analog applications, such as in frequency multiplication, by virtue of its unusual oscillatory transfer characteristic. Here, we propose and analyze yet another type of SpinFET in this class, which may have a different application. It is based on gate-tuned strain in a Weyl semimetal, with the strain modulating spin interference. Because the operating principle is non-classical, the channel conductance shows oscillatory dependence on the channel length at zero gate voltage. Furthermore, the transconductance can switch sign if the channel length is varied. This latter feature can be exploited to implement a complementary device like complementary metal oxide semiconductor (CMOS) by connecting two such SpinFETs of slightly different channel lengths in series. These unusual properties may have niche applications.