Influence of the channel bed slope on Shannon, Tsallis, and Renyi entropy parameters

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-09-15 DOI:10.2166/hydro.2023.008
Gurpinder Singh, Rakesh Khosa, Manoj Kumar Jain, Tommaso Moramarco, Vijay P. Singh
{"title":"Influence of the channel bed slope on Shannon, Tsallis, and Renyi entropy parameters","authors":"Gurpinder Singh, Rakesh Khosa, Manoj Kumar Jain, Tommaso Moramarco, Vijay P. Singh","doi":"10.2166/hydro.2023.008","DOIUrl":null,"url":null,"abstract":"Abstract Velocity distribution plays a fundamental role in understanding the hydrodynamics of open-channel flow. Among a multitude of approaches, the entropy-based approach holds great promise in achieving a reasonable characterisation of the velocity distribution. In entropy-based methods, the distribution depends on a key parameter, known as the entropy parameter (a function of the time-averaged mean velocity and maximum velocity), that relates to channel characteristics, such as channel roughness and channel bed slopes. The entropy parameter was regarded as constant for lack of experimental evidence, which would otherwise demonstrate if it had any correlation with channel properties. A series of experiments were conducted to collect velocity data in the laboratory flume for seven different values of the channel bed slope. The experimental data analysis revealed dissimilar fluctuations in entropy parameter values with varying bed slopes, with the lowest coefficient of variation in Renyi's (∼0.5%) and the highest in Shannon's case (∼10%). Performance evaluation of the predicted results substantiated good accuracy for all three entropies with the best results of Renyi entropy and lent strong support for using a constant (overall average) value of the entropy parameter for a specific channel cross-section rather than separate values for each channel bed slope.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Velocity distribution plays a fundamental role in understanding the hydrodynamics of open-channel flow. Among a multitude of approaches, the entropy-based approach holds great promise in achieving a reasonable characterisation of the velocity distribution. In entropy-based methods, the distribution depends on a key parameter, known as the entropy parameter (a function of the time-averaged mean velocity and maximum velocity), that relates to channel characteristics, such as channel roughness and channel bed slopes. The entropy parameter was regarded as constant for lack of experimental evidence, which would otherwise demonstrate if it had any correlation with channel properties. A series of experiments were conducted to collect velocity data in the laboratory flume for seven different values of the channel bed slope. The experimental data analysis revealed dissimilar fluctuations in entropy parameter values with varying bed slopes, with the lowest coefficient of variation in Renyi's (∼0.5%) and the highest in Shannon's case (∼10%). Performance evaluation of the predicted results substantiated good accuracy for all three entropies with the best results of Renyi entropy and lent strong support for using a constant (overall average) value of the entropy parameter for a specific channel cross-section rather than separate values for each channel bed slope.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
河床坡度对Shannon、Tsallis和Renyi熵参数的影响
摘要速度分布是理解明渠流体力学的基础。在众多方法中,基于熵的方法在实现速度分布的合理表征方面具有很大的希望。在基于熵的方法中,分布取决于一个关键参数,即熵参数(时间平均平均速度和最大速度的函数),该参数与河道特征(如河道粗糙度和河床坡度)有关。由于缺乏实验证据,熵参数被认为是常数,否则无法证明它是否与通道特性有任何相关性。在实验室水槽中对七个不同的河床坡度值进行了一系列的流速数据采集实验。实验数据分析显示,熵参数值随河床坡度的变化有不同的波动,Renyi的变化系数最低(~ 0.5%),Shannon的变化系数最高(~ 10%)。对预测结果的性能评价表明,3种熵的预测结果均具有较好的准确性,其中仁义熵的预测结果最好,这有力地支持了对某一特定河道断面使用恒定(总体平均值)的熵参数,而不是对每个河床坡面分别使用单独的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1