Compressive performance of paper honeycomb core layer with double-hole in cell walls

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2023-11-07 DOI:10.1177/03093247231202571
Yanfeng Guo, Yuxi Sun, Yungang Fu, Jiaxue Liu, Huineng Wang, Niuniu Yu
{"title":"Compressive performance of paper honeycomb core layer with double-hole in cell walls","authors":"Yanfeng Guo, Yuxi Sun, Yungang Fu, Jiaxue Liu, Huineng Wang, Niuniu Yu","doi":"10.1177/03093247231202571","DOIUrl":null,"url":null,"abstract":"The perforated paper honeycomb structure with double-hole in cell walls is one kind of innovative sandwich structure also to improve drying process of traditional honeycomb paperboard. Based on the analytical calculation, experiment inspection and finite element analysis, this paper is focus on the paper honeycomb core layer with double-hole in cell walls, and especially studies the bending and folding deformation and the compressive strength under out-of-plane quasi-static compression for different humidity. The structure first appears elastic buckling and folds near the circular holes in the cell wall, and goes on buckling, folding and crushing until to the densification with the continuously increase of compression set. Its quasi-static compressive stress and strain curve mainly shows four kinds of compression deformation processes, such as linear elastic stage, elastic yielding stage, plastic collapse stage, and densification stage. The critical stress and plateau stress of the structure slowly decrease with the increase of humidity and aperture, and the multiple linear regression analysis result illustrates that the relative humidity has much more influence on the critical stress and plateau stress. For different humidity and aperture, the analytical calculation result is close to the experiment result. However, the finite element simulation result greatly deviates from the above two results, especially for relative humidity 50% and 60% cases.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"52 9","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03093247231202571","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The perforated paper honeycomb structure with double-hole in cell walls is one kind of innovative sandwich structure also to improve drying process of traditional honeycomb paperboard. Based on the analytical calculation, experiment inspection and finite element analysis, this paper is focus on the paper honeycomb core layer with double-hole in cell walls, and especially studies the bending and folding deformation and the compressive strength under out-of-plane quasi-static compression for different humidity. The structure first appears elastic buckling and folds near the circular holes in the cell wall, and goes on buckling, folding and crushing until to the densification with the continuously increase of compression set. Its quasi-static compressive stress and strain curve mainly shows four kinds of compression deformation processes, such as linear elastic stage, elastic yielding stage, plastic collapse stage, and densification stage. The critical stress and plateau stress of the structure slowly decrease with the increase of humidity and aperture, and the multiple linear regression analysis result illustrates that the relative humidity has much more influence on the critical stress and plateau stress. For different humidity and aperture, the analytical calculation result is close to the experiment result. However, the finite element simulation result greatly deviates from the above two results, especially for relative humidity 50% and 60% cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双孔纸蜂窝芯层的抗压性能
双孔穿孔纸蜂窝结构是一种创新的夹层结构,也是对传统蜂窝纸板干燥工艺的改进。本文通过解析计算、实验检验和有限元分析,重点研究了蜂窝壁双孔纸蜂窝芯层在不同湿度条件下的弯曲、折叠变形及面外准静态压缩的抗压强度。结构首先在细胞壁圆孔附近出现弹性屈曲和褶皱,随着压缩集的不断增加,结构不断发生屈曲、褶皱和破碎,直至致密化。其准静态压应力应变曲线主要表现为线弹性阶段、弹性屈服阶段、塑性崩溃阶段和致密化阶段四种压缩变形过程。结构的临界应力和平台应力随湿度和孔径的增加而缓慢降低,多元线性回归分析结果表明相对湿度对临界应力和平台应力的影响更大。对于不同的湿度和孔径,分析计算结果与实验结果接近。然而,有限元模拟结果与上述两个结果偏差较大,特别是在相对湿度50%和60%的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1