{"title":"Compressive performance of paper honeycomb core layer with double-hole in cell walls","authors":"Yanfeng Guo, Yuxi Sun, Yungang Fu, Jiaxue Liu, Huineng Wang, Niuniu Yu","doi":"10.1177/03093247231202571","DOIUrl":null,"url":null,"abstract":"The perforated paper honeycomb structure with double-hole in cell walls is one kind of innovative sandwich structure also to improve drying process of traditional honeycomb paperboard. Based on the analytical calculation, experiment inspection and finite element analysis, this paper is focus on the paper honeycomb core layer with double-hole in cell walls, and especially studies the bending and folding deformation and the compressive strength under out-of-plane quasi-static compression for different humidity. The structure first appears elastic buckling and folds near the circular holes in the cell wall, and goes on buckling, folding and crushing until to the densification with the continuously increase of compression set. Its quasi-static compressive stress and strain curve mainly shows four kinds of compression deformation processes, such as linear elastic stage, elastic yielding stage, plastic collapse stage, and densification stage. The critical stress and plateau stress of the structure slowly decrease with the increase of humidity and aperture, and the multiple linear regression analysis result illustrates that the relative humidity has much more influence on the critical stress and plateau stress. For different humidity and aperture, the analytical calculation result is close to the experiment result. However, the finite element simulation result greatly deviates from the above two results, especially for relative humidity 50% and 60% cases.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"52 9","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03093247231202571","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The perforated paper honeycomb structure with double-hole in cell walls is one kind of innovative sandwich structure also to improve drying process of traditional honeycomb paperboard. Based on the analytical calculation, experiment inspection and finite element analysis, this paper is focus on the paper honeycomb core layer with double-hole in cell walls, and especially studies the bending and folding deformation and the compressive strength under out-of-plane quasi-static compression for different humidity. The structure first appears elastic buckling and folds near the circular holes in the cell wall, and goes on buckling, folding and crushing until to the densification with the continuously increase of compression set. Its quasi-static compressive stress and strain curve mainly shows four kinds of compression deformation processes, such as linear elastic stage, elastic yielding stage, plastic collapse stage, and densification stage. The critical stress and plateau stress of the structure slowly decrease with the increase of humidity and aperture, and the multiple linear regression analysis result illustrates that the relative humidity has much more influence on the critical stress and plateau stress. For different humidity and aperture, the analytical calculation result is close to the experiment result. However, the finite element simulation result greatly deviates from the above two results, especially for relative humidity 50% and 60% cases.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).