Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel
{"title":"A comprehensive study of various regressions and deep learning approaches for the prediction of friction factor in mobile bed channels","authors":"Akshita Bassi, Ajaz Ahmad Mir, Bimlesh Kumar, Mahesh Patel","doi":"10.2166/hydro.2023.246","DOIUrl":null,"url":null,"abstract":"Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A fundamental issue in the hydraulics of movable bed channels is the measurement of friction factor (λ), which represents the head loss because of hydraulic resistance. The execution of experiments in the laboratory hinders the predictability of λ over a short period of time. The major challenges that arise with traditional forecasting approaches are due to their subjective nature and reliance on various assumptions. Therefore, advanced machine learning (ML) and artificial intelligence approaches can be utilized to overcome this tedious task. Here, eight different ML techniques have been employed to predict the λ using eight different input features. To compare the performance of models, various error metrics have been assessed and compared. The graphical inferences from heatmap data visualization, Taylor diagram, sensitivity analysis, and parametric analysis with different input scenarios (ISs) have been carried out. Based on the outcome of the study, it has been observed that K Star in the IS1 with correlation coefficient (R2) value equal to 0.9716 followed by M5 Prime (0.9712) and Random Forest (0.9603) in IS2 and IS4, respectively, have provided better results as compared to the other ML models to predict λ in terms of least errors.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.