{"title":"Multimetal Stahl 1018 Composite – Structure and Strength Properties","authors":"","doi":"10.24425/afe.2020.133351","DOIUrl":null,"url":null,"abstract":"The series of experiments was performed on commercial polymeric composite material MultimetalStahl 1018. Strength tests were performed to determine the yield point of the material. The composite had the highest hardness at a temperature of 20°C. Hardness and microhardness were determined in further experiments. The adhesiveness of the material to metal surfaces and impact strength were also analyzed. The scanning electron microscopy and X-ray microanalysis methods were used for analyzing the microstructure of the material. Chemical composition of selected areas was analyzed, which allowed for a preliminary identification of metallic elements content in the composite. The microstructure of composite is highly non-homogeneous and particular phases are highly elongated and angular. The analyzed phase was enriched with silicon, aluminium, magnesium, iron and vanadium other phases enriched with metallic elements, e","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"496 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2020.133351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
The series of experiments was performed on commercial polymeric composite material MultimetalStahl 1018. Strength tests were performed to determine the yield point of the material. The composite had the highest hardness at a temperature of 20°C. Hardness and microhardness were determined in further experiments. The adhesiveness of the material to metal surfaces and impact strength were also analyzed. The scanning electron microscopy and X-ray microanalysis methods were used for analyzing the microstructure of the material. Chemical composition of selected areas was analyzed, which allowed for a preliminary identification of metallic elements content in the composite. The microstructure of composite is highly non-homogeneous and particular phases are highly elongated and angular. The analyzed phase was enriched with silicon, aluminium, magnesium, iron and vanadium other phases enriched with metallic elements, e
期刊介绍:
Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read