{"title":"Microstructure and Properties of Experimental Mg-9Al-5RE-1Zn-Mn Magnesium Alloy","authors":"K. Braszczyńska-malik","doi":"10.24425/afe.2023.148960","DOIUrl":null,"url":null,"abstract":"In this paper, an experimental Mg-Al-RE-type magnesium alloy, named AEZ951, is presented. The chemical composition of the investigated alloy was ca. 9 wt% Al, 5 wt% RE (rare earth elements), 0.7 wt% Zn and 3 wt% Mn. The experimental material was gravity cast into a cold steel mould. Microstructure analyses were carried out by light microscopy, along with X-ray phase analysis and scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM + EDX). Detailed investigations disclosed the presence of primary dendrites of an (Mg) solid solution and Al 11 RE 3 , and Al 10 RE 2 Mn 7 intermetallic compounds in the alloy microstructure. The volume fraction of the Al 11 RE 3 phase and + eutectic was also presented. The hardness, impact strength, tensile strength as well as the yield strength of the alloy were examined in tests at room temperature. The examined experimental Mg-Al-RE-type magnesium alloy exhibited higher mechanical properties than the commercial AZ91 alloy (cast in the same conditions).","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"276 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2023.148960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an experimental Mg-Al-RE-type magnesium alloy, named AEZ951, is presented. The chemical composition of the investigated alloy was ca. 9 wt% Al, 5 wt% RE (rare earth elements), 0.7 wt% Zn and 3 wt% Mn. The experimental material was gravity cast into a cold steel mould. Microstructure analyses were carried out by light microscopy, along with X-ray phase analysis and scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM + EDX). Detailed investigations disclosed the presence of primary dendrites of an (Mg) solid solution and Al 11 RE 3 , and Al 10 RE 2 Mn 7 intermetallic compounds in the alloy microstructure. The volume fraction of the Al 11 RE 3 phase and + eutectic was also presented. The hardness, impact strength, tensile strength as well as the yield strength of the alloy were examined in tests at room temperature. The examined experimental Mg-Al-RE-type magnesium alloy exhibited higher mechanical properties than the commercial AZ91 alloy (cast in the same conditions).
期刊介绍:
Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read