EXPERIMENTAL VALIDATION OF A SEAL FLUTTER MODEL

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-10-19 DOI:10.1115/1.4063514
Roque Corral, Michele Greco
{"title":"EXPERIMENTAL VALIDATION OF A SEAL FLUTTER MODEL","authors":"Roque Corral, Michele Greco","doi":"10.1115/1.4063514","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the predictions of an analytical model for seal flutter have been compared with the experimental data of a rotating multi-cavity labyrinth seal test rig. The experiments were conducted to assess the flutter inception in a large set of operating conditions by varying the rotational speed and the total pressure ratio across the seal. The analytical model derived by Corral et al. (2022, “Effective Clearance and Differential Gapping Impact on Seal Flutter Modelling and Validation,” ASME J. Turbomach., 144 (7), p. 071010) has been previously validated by using a frequency domain linearized Navier–Stokes solver retaining the effect of the effective gaps and the kinetic energy carried over to the downstream fin. A set of 3D steady RANS simulations has been carried out to reduce the uncertainty in the steady characteristics of the seal that are used to inform the flutter model. The simulations consider the static deformation due to the pressure and the centrifugal force through a set of numerical models with geometrical gap differences. The stability has been investigated in a large range of operating conditions. It is concluded that the analytical model can be used to quickly predict the modes susceptible to flutter, provided that the steady flow field and the effective running clearances of the seal are well predicted.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"1 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063514","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, the predictions of an analytical model for seal flutter have been compared with the experimental data of a rotating multi-cavity labyrinth seal test rig. The experiments were conducted to assess the flutter inception in a large set of operating conditions by varying the rotational speed and the total pressure ratio across the seal. The analytical model derived by Corral et al. (2022, “Effective Clearance and Differential Gapping Impact on Seal Flutter Modelling and Validation,” ASME J. Turbomach., 144 (7), p. 071010) has been previously validated by using a frequency domain linearized Navier–Stokes solver retaining the effect of the effective gaps and the kinetic energy carried over to the downstream fin. A set of 3D steady RANS simulations has been carried out to reduce the uncertainty in the steady characteristics of the seal that are used to inform the flutter model. The simulations consider the static deformation due to the pressure and the centrifugal force through a set of numerical models with geometrical gap differences. The stability has been investigated in a large range of operating conditions. It is concluded that the analytical model can be used to quickly predict the modes susceptible to flutter, provided that the steady flow field and the effective running clearances of the seal are well predicted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密封颤振模型的实验验证
本文将密封颤振分析模型的预测结果与旋转多腔迷宫密封试验台的实验数据进行了比较。通过改变密封的转速和总压比,进行了试验,以评估在一组大的操作条件下颤振的开始。Corral等人(2022,“有效间隙和差异间隙对密封颤振建模和验证的影响”,ASME J. Turbomach。之前已经通过使用频域线性化的Navier-Stokes解算器进行了验证,该解算器保留了有效间隙和传递到下游鳍片的动能的影响。为了减少用于颤振模型的密封稳定特性的不确定性,已经进行了一组3D稳态RANS模拟。通过一组具有几何间隙差的数值模型,模拟考虑了压力和离心力引起的静态变形。在大范围的操作条件下,对其稳定性进行了研究。结果表明,只要能准确预测密封的稳定流场和有效运行间隙,该解析模型可以快速预测易受颤振影响的模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
期刊最新文献
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1