ATTENUATION OF DETRIMENTAL HUB LEAKAGE EFFECTS IN AN AXIAL COMPRESSOR ROTOR BY CUSTOMIZED GEOMETRICAL DESIGN FEATURES

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-10-19 DOI:10.1115/1.4063508
Jannik Petermann, Kevin Schulz, Bernd Becker, Volker Gümmer
{"title":"ATTENUATION OF DETRIMENTAL HUB LEAKAGE EFFECTS IN AN AXIAL COMPRESSOR ROTOR BY CUSTOMIZED GEOMETRICAL DESIGN FEATURES","authors":"Jannik Petermann, Kevin Schulz, Bernd Becker, Volker Gümmer","doi":"10.1115/1.4063508","DOIUrl":null,"url":null,"abstract":"Abstract The aerodynamic impact of hub gap leakage on the performance characteristics of an axial compressor rotor in conventional design (no blisk) with a high hub-to-tip ratio has been investigated using three-dimensional steady-state Reynolds-averaged Navier–Stokes simulations. The inclusion of circumferential hub gaps in front of the leading edge and after the trailing edge, as well as inter-platform leakage, reduced the total pressure ratio and the polytropic efficiency of the rotor by as much as 3.74% and 3.97%, respectively, compared to a design case with clean endwalls. Potential design recommendations in terms of improved aerodynamic robustness against leakage effects were derived from the separate sealing of each hub gap. Six geometry modifications were assessed, which based on these results. In a throttled operating condition, large edge radii in the front gap on the disk and platform partially recovered the initial losses of both the total pressure ratio (17.7%) and polytropic efficiency (19.6%). A circular lateral platform shape with the opening pointing toward the blade’s pressure side showed superior loss recovery capabilities at a dethrottled operating point. The combination of both features did not reduce the losses further. However, the circular lateral platform shape combined with smaller front gap chamfers proved more beneficial in a throttled state.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"2 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The aerodynamic impact of hub gap leakage on the performance characteristics of an axial compressor rotor in conventional design (no blisk) with a high hub-to-tip ratio has been investigated using three-dimensional steady-state Reynolds-averaged Navier–Stokes simulations. The inclusion of circumferential hub gaps in front of the leading edge and after the trailing edge, as well as inter-platform leakage, reduced the total pressure ratio and the polytropic efficiency of the rotor by as much as 3.74% and 3.97%, respectively, compared to a design case with clean endwalls. Potential design recommendations in terms of improved aerodynamic robustness against leakage effects were derived from the separate sealing of each hub gap. Six geometry modifications were assessed, which based on these results. In a throttled operating condition, large edge radii in the front gap on the disk and platform partially recovered the initial losses of both the total pressure ratio (17.7%) and polytropic efficiency (19.6%). A circular lateral platform shape with the opening pointing toward the blade’s pressure side showed superior loss recovery capabilities at a dethrottled operating point. The combination of both features did not reduce the losses further. However, the circular lateral platform shape combined with smaller front gap chamfers proved more beneficial in a throttled state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于定制几何设计特征的轴向压气机转子轮毂泄漏效应衰减
采用三维稳态reynolds -average Navier-Stokes模拟方法,研究了高轮毂比常规设计(无叶盘)下轮毂间隙泄漏对轴流压气机转子性能特性的气动影响。与端壁干净的设计情况相比,前缘前和尾缘后的轮毂周向间隙以及平台间泄漏使转子的总压比和多向效率分别降低了3.74%和3.97%。针对泄漏效应,改进气动稳健性的潜在设计建议来自于每个轮毂间隙的单独密封。基于这些结果,评估了六种几何修改。在节流工况下,圆盘和平台前间隙的大边缘半径部分弥补了总压比(17.7%)和多向效率(19.6%)的初始损失。圆形横向平台形状的开口指向叶片的压力侧,在去节流操作点显示出优越的损失恢复能力。这两种特征的结合并没有进一步减少损失。然而,圆形横向平台形状结合较小的前间隙倒角被证明在节流状态下更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
期刊最新文献
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1