MASS-HEAT COUPLING IN FILM COOLING EXPERIMENTS—THE INFLUENCE OF TEMPERATURE AND TURBULENCE ON THE DUFOUR EFFECT

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-10-19 DOI:10.1115/1.4063411
Connor J. Wiese, James L. Rutledge
{"title":"MASS-HEAT COUPLING IN FILM COOLING EXPERIMENTS—THE INFLUENCE OF TEMPERATURE AND TURBULENCE ON THE DUFOUR EFFECT","authors":"Connor J. Wiese, James L. Rutledge","doi":"10.1115/1.4063411","DOIUrl":null,"url":null,"abstract":"Abstract The use of foreign gases in laboratory film cooling experiments is attractive since variable density ratios can be achieved with coolant-to-freestream temperature ratios near unity, often reducing the cost and difficulty of the experimental campaign. In adiabatic effectiveness experiments employing pressure sensitive paint along with the mass transfer analogy to heat transfer, isothermal surfaces are often an experimental requirement. Furthermore, low-temperature laboratory experiments using thermal techniques often employ relatively close matches between the coolant and freestream temperatures. Using foreign gases, however, introduces off-diagonal couplings of heat and mass transport, which can produce unexpected results in film cooling experiments. In particular, the Dufour effect—also called the diffusion-thermo effect—which is the transfer of thermal energy by mass transfer processes, can manifest in surface temperatures that break the traditional bounds of thermal adiabatic effectiveness experiments: outside the upper and lower bounds of the coolant and freestream temperature. Beyond the expected confusion for the researcher, this effect can also be detrimental to those that assume that matching the coolant and freestream temperatures are the necessary and sufficient conditions to ensure isothermal surface conditions in traditional pressure sensitive paint experiments. In this work, the influence of cooling gas selection, experimental temperature, and experimental freestream turbulence conditions are explored on a simulated leading edge with compound injection from a cylindrical cooling hole. Air, argon, carbon dioxide, helium, and nitrogen coolants were analyzed due to their use in prior film cooling studies. The Dufour effect was found to be significant when using helium as the coolant, though temperature separation was also observed in argon and carbon dioxide cases. Additionally, elevated experiment temperatures generally increased temperature separation. Finally, high freestream turbulence intensity was found to reduce, but not eliminate, the Dufour effect in helium experiments.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"21 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063411","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The use of foreign gases in laboratory film cooling experiments is attractive since variable density ratios can be achieved with coolant-to-freestream temperature ratios near unity, often reducing the cost and difficulty of the experimental campaign. In adiabatic effectiveness experiments employing pressure sensitive paint along with the mass transfer analogy to heat transfer, isothermal surfaces are often an experimental requirement. Furthermore, low-temperature laboratory experiments using thermal techniques often employ relatively close matches between the coolant and freestream temperatures. Using foreign gases, however, introduces off-diagonal couplings of heat and mass transport, which can produce unexpected results in film cooling experiments. In particular, the Dufour effect—also called the diffusion-thermo effect—which is the transfer of thermal energy by mass transfer processes, can manifest in surface temperatures that break the traditional bounds of thermal adiabatic effectiveness experiments: outside the upper and lower bounds of the coolant and freestream temperature. Beyond the expected confusion for the researcher, this effect can also be detrimental to those that assume that matching the coolant and freestream temperatures are the necessary and sufficient conditions to ensure isothermal surface conditions in traditional pressure sensitive paint experiments. In this work, the influence of cooling gas selection, experimental temperature, and experimental freestream turbulence conditions are explored on a simulated leading edge with compound injection from a cylindrical cooling hole. Air, argon, carbon dioxide, helium, and nitrogen coolants were analyzed due to their use in prior film cooling studies. The Dufour effect was found to be significant when using helium as the coolant, though temperature separation was also observed in argon and carbon dioxide cases. Additionally, elevated experiment temperatures generally increased temperature separation. Finally, high freestream turbulence intensity was found to reduce, but not eliminate, the Dufour effect in helium experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜冷却实验中的质热耦合——温度和湍流对杜福效应的影响
在实验室气膜冷却实验中使用外来气体是有吸引力的,因为可以在冷却液与自由流温度比接近统一的情况下实现可变密度比,通常可以降低实验活动的成本和难度。在采用压敏涂料的绝热效能实验中,将传质类比为传热,等温表面通常是实验要求。此外,使用热技术的低温实验室实验通常采用冷却剂和自由流温度之间相对接近的匹配。然而,使用外来气体会引入热量和质量输运的非对角线耦合,这可能会在膜冷却实验中产生意想不到的结果。特别是,杜福尔效应——也称为扩散热效应——即通过传质过程传递热能,可以在打破传统绝热有效性实验界限的表面温度中表现出来:超出冷却剂和自由流温度的上限和下限。除了研究人员预期的困惑之外,这种影响也可能对那些认为在传统的压敏涂料实验中,冷却剂和自由流温度匹配是确保等温表面条件的必要和充分条件的人有害。在此工作中,研究了冷却气体选择、实验温度和实验自由流湍流条件对圆柱形冷却孔复合喷射模拟前缘的影响。由于空气、氩气、二氧化碳、氦气和氮气冷却剂在先前的膜冷却研究中使用,因此对它们进行了分析。当使用氦气作为冷却剂时,杜福尔效应被发现是显著的,尽管在氩气和二氧化碳的情况下也观察到温度分离。此外,升高的实验温度通常会增加温度分离。最后,发现高自由流湍流强度可以减少,但不能消除氦实验中的杜福效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
期刊最新文献
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1