SCALING OVERALL EFFECTIVENESS IN LOW TEMPERATURE EXPERIMENTS

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Turbomachinery-Transactions of the Asme Pub Date : 2023-10-19 DOI:10.1115/1.4063412
Carol Bryant, James L. Rutledge
{"title":"SCALING OVERALL EFFECTIVENESS IN LOW TEMPERATURE EXPERIMENTS","authors":"Carol Bryant, James L. Rutledge","doi":"10.1115/1.4063412","DOIUrl":null,"url":null,"abstract":"Abstract The design of film-cooled engine components requires an understanding of the expected temperature distributions while in service, thus requiring accurate predictions through low-temperature testing. Overall effectiveness, ϕ, is the integrated indicator of overall cooling performance. An experiment to measure ϕ at low temperature requires appropriate scaling through careful selection of not only the coolant and freestream gases but also the model material itself. Matching ϕ requires that the experiment has matched values of the adiabatic effectiveness, Biot number, coolant warming factor, and ratio of external to internal heat transfer coefficient. Previous research has shown the requirements to match each of those four parameters individually. However, matching all those parameters simultaneously presents an overconstrained problem, and no comprehensive recommendations exist for the practical experimentalist who wishes to conduct an appropriately scaled, low-temperature experiment truly suitable for determining ϕ. Four fluidic parameters are identified, which in an experiment must be as close as possible to their values at engine conditions. A normalized root-mean-square difference (NRMSD) of the residuals of those parameters is proposed to quantify how well a proposed wind tunnel experiment is likely to yield engine-relevant ϕ values. We show that this process may be used by any experimentalist to identify the appropriate fluids, conditions, and materials for a matched ϕ experiment. Several case studies were performed using computational fluid dynamics (CFD) to show the utility of this process. Of the common experimental techniques examined here, a matched Biot number experiment with 500 K freestream air and 250 K coolant appears to be particularly adept at simulating engine conditions, even better than experiments that make use of CO2 coolant.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"27 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063412","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The design of film-cooled engine components requires an understanding of the expected temperature distributions while in service, thus requiring accurate predictions through low-temperature testing. Overall effectiveness, ϕ, is the integrated indicator of overall cooling performance. An experiment to measure ϕ at low temperature requires appropriate scaling through careful selection of not only the coolant and freestream gases but also the model material itself. Matching ϕ requires that the experiment has matched values of the adiabatic effectiveness, Biot number, coolant warming factor, and ratio of external to internal heat transfer coefficient. Previous research has shown the requirements to match each of those four parameters individually. However, matching all those parameters simultaneously presents an overconstrained problem, and no comprehensive recommendations exist for the practical experimentalist who wishes to conduct an appropriately scaled, low-temperature experiment truly suitable for determining ϕ. Four fluidic parameters are identified, which in an experiment must be as close as possible to their values at engine conditions. A normalized root-mean-square difference (NRMSD) of the residuals of those parameters is proposed to quantify how well a proposed wind tunnel experiment is likely to yield engine-relevant ϕ values. We show that this process may be used by any experimentalist to identify the appropriate fluids, conditions, and materials for a matched ϕ experiment. Several case studies were performed using computational fluid dynamics (CFD) to show the utility of this process. Of the common experimental techniques examined here, a matched Biot number experiment with 500 K freestream air and 250 K coolant appears to be particularly adept at simulating engine conditions, even better than experiments that make use of CO2 coolant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低温实验中衡量整体有效性
气膜冷却发动机部件的设计需要了解在使用过程中的预期温度分布,从而需要通过低温测试进行准确的预测。整体效能,φ,是整体冷却性能的综合指标。在低温下测量φ的实验需要适当的缩放,不仅要仔细选择冷却剂和自由流气体,还要选择模型材料本身。匹配φ要求实验具有匹配的绝热效能、Biot数、冷却剂变暖因子和内外换热系数的比值。先前的研究表明,需要分别匹配这四个参数。然而,同时匹配所有这些参数会出现一个过度约束的问题,对于希望进行适当缩放的实际实验者来说,没有全面的建议,低温实验真正适合确定φ。确定了四个流体参数,在实验中必须尽可能接近它们在发动机条件下的值。提出了这些参数残差的标准化均方根差(NRMSD),以量化所提议的风洞实验可能产生与发动机相关的φ值的程度。我们表明,这一过程可用于任何实验者,以确定适当的流体,条件和材料的匹配φ实验。使用计算流体动力学(CFD)进行了几个案例研究,以展示该过程的实用性。在常见的实验技术中,500 K的自由流空气和250 K的冷却剂的匹配Biot数实验似乎特别擅长模拟发动机状况,甚至比使用二氧化碳冷却剂的实验更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
期刊最新文献
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 3: Secondary Flow Effects UNDERSTANDING THERMAL UNSTEADINESS IN ENGINE REPRESENTATIVE FLOWS AND IMPROVED METHODOLOGIES FOR DERIVED HEAT TRANSFER CALCULATIONS USING THIN-FILM GAUGES A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 1: Sliding Interfaces and Unsteady Row Interactions Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme - Part 2: Shock-Capturing and Transonic Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1