{"title":"A Low-Cost Instrumented Shoe System for Gait Phase Detection Based on Foot Plantar Pressure Data","authors":"Xinyao Hu;Qingsong Duan;Junpeng Tang;Gengshu Chen;Zhong Zhao;Zhenglong Sun;Chao Chen;Xingda Qu","doi":"10.1109/JTEHM.2023.3319576","DOIUrl":null,"url":null,"abstract":"This paper presents a novel low-cost and fully-portable instrumented shoe system for gait phase detection. The instrumented shoe consists of 174 independent sensing units constructed based on an off-the-shelf force-sensitive film known as the Velostat conductive copolymer. A zero potential method was implemented to address the crosstalk effect among the matrix-formed sensing arrays. A customized algorithm for gait event and phase detection was developed to estimate stance sub-phases including initial contact, flat foot, and push off. Experiments were carried out to evaluate the performance of the proposed instrumented shoe system in gait phase detection for both straight-line walking and turning walking. The results showed that the mean absolute time differences between the estimated phases by the proposed instrumented shoe system and the reference measurement ranged from 45 to 58 ms during straight-line walking and from 51 to 77 ms during turning walking, which were comparable to the state of art.Clinical and Translational Impact Statement—By allowing convenient gait monitoring in home healthcare settings, the proposed system enables extensive ADL data collection and facilitates developing effective treatment and rehabilitation strategies for patients with movement disorders.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"84-96"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10264157","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10264157/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a novel low-cost and fully-portable instrumented shoe system for gait phase detection. The instrumented shoe consists of 174 independent sensing units constructed based on an off-the-shelf force-sensitive film known as the Velostat conductive copolymer. A zero potential method was implemented to address the crosstalk effect among the matrix-formed sensing arrays. A customized algorithm for gait event and phase detection was developed to estimate stance sub-phases including initial contact, flat foot, and push off. Experiments were carried out to evaluate the performance of the proposed instrumented shoe system in gait phase detection for both straight-line walking and turning walking. The results showed that the mean absolute time differences between the estimated phases by the proposed instrumented shoe system and the reference measurement ranged from 45 to 58 ms during straight-line walking and from 51 to 77 ms during turning walking, which were comparable to the state of art.Clinical and Translational Impact Statement—By allowing convenient gait monitoring in home healthcare settings, the proposed system enables extensive ADL data collection and facilitates developing effective treatment and rehabilitation strategies for patients with movement disorders.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.