A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2024-11-04 DOI:10.1109/JTEHM.2024.3491612
Dong Miao;Ying Zhao;Xue Ren;Meng Dou;Yu Yao;Yiran Xu;Yingchao Cui;Ailian Liu
{"title":"A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation","authors":"Dong Miao;Ying Zhao;Xue Ren;Meng Dou;Yu Yao;Yiran Xu;Yingchao Cui;Ailian Liu","doi":"10.1109/JTEHM.2024.3491612","DOIUrl":null,"url":null,"abstract":"To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver function.This research presents a novel approach to automating liver segmentation by identifying seven key anatomical landmarks using portal venous phase images from contrast-enhanced magnetic resonance imaging (CE-MRI). By employing a multi-task learning framework, we synchronized the detection of these landmarks with the segmentation process, resulting in accurate and robust delineation of the Couinaud segments.To comprehensively validate our model, we included multiple patient types in our test set—those with normal livers, diffuse liver diseases, and localized liver lesions—under varied imaging conditions, including two field strengths, two devices, and two contrast agents. Our model achieved an average Dice Similarity Coefficient (DSC) of 85.29%, surpassing the next best-performing models by 3.12%.Our research presents a pioneering automated approach for segmenting Couinaud segments using CE-MRI. By correlating landmark detection with segmentation, we enhance surgical planning precision. This method promises improved clinical outcomes by accurately adapting to anatomical variability and reducing potential postoperative complications.Clinical impact: The application of this technique in clinical settings is poised to enhance the precision of liver surgical planning. This could lead to more tailored surgical interventions, minimization of operative risks, and preservation of healthy liver tissue, culminating in improved patient outcomes and potentially lowering the incidence of postoperative complications.Clinical and Translational Impact Statement: This research offers a novel automated liver segmentation technique, enhancing preoperative planning and potentially reducing complications, which may translate into better postoperative outcomes in hepatic surgery.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"697-710"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742419","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742419/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver function.This research presents a novel approach to automating liver segmentation by identifying seven key anatomical landmarks using portal venous phase images from contrast-enhanced magnetic resonance imaging (CE-MRI). By employing a multi-task learning framework, we synchronized the detection of these landmarks with the segmentation process, resulting in accurate and robust delineation of the Couinaud segments.To comprehensively validate our model, we included multiple patient types in our test set—those with normal livers, diffuse liver diseases, and localized liver lesions—under varied imaging conditions, including two field strengths, two devices, and two contrast agents. Our model achieved an average Dice Similarity Coefficient (DSC) of 85.29%, surpassing the next best-performing models by 3.12%.Our research presents a pioneering automated approach for segmenting Couinaud segments using CE-MRI. By correlating landmark detection with segmentation, we enhance surgical planning precision. This method promises improved clinical outcomes by accurately adapting to anatomical variability and reducing potential postoperative complications.Clinical impact: The application of this technique in clinical settings is poised to enhance the precision of liver surgical planning. This could lead to more tailored surgical interventions, minimization of operative risks, and preservation of healthy liver tissue, culminating in improved patient outcomes and potentially lowering the incidence of postoperative complications.Clinical and Translational Impact Statement: This research offers a novel automated liver segmentation technique, enhancing preoperative planning and potentially reducing complications, which may translate into better postoperative outcomes in hepatic surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多任务的深度学习框架与地标检测,用于核磁共振成像轿厢分割
为了在肝脏手术的术前规划中实现精确的Couinaud肝脏分割,适应复杂的解剖结构和显著的变异,优化手术方法,减少术后并发症,保护肝功能,本研究提出了一种新的肝脏自动分割方法,通过对比增强磁共振成像(CE-MRI)的门静脉相图像识别七个关键的解剖地标。为了全面验证我们的模型,我们在不同的成像条件下(包括两种场强、两种设备和两种造影剂)将多种类型的患者纳入测试集,包括正常肝脏、弥漫性肝病和局部肝脏病变患者。我们的模型达到了平均 85.29% 的骰子相似系数 (DSC),比下一个表现最好的模型高出 3.12%。通过将地标检测与分割相关联,我们提高了手术规划的精确度。这种方法能准确适应解剖变异,减少潜在的术后并发症,有望改善临床效果:临床影响:这项技术在临床中的应用有望提高肝脏手术规划的精确度。临床和转化影响声明:这项研究提供了一种新颖的自动肝脏分割技术,加强了术前规划,并有可能减少并发症,从而改善肝脏手术的术后效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation Video-Based Respiratory Rate Estimation for Infants in the NICU A Novel Chest-Based PPG Measurement System Integrating Multimodal Neuroimaging and Genetics: A Structurally-Linked Sparse Canonical Correlation Analysis Approach A Pre-Voiding Alarm System Using Wearable Ultrasound and Machine Learning Algorithms for Children With Nocturnal Enuresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1