Yeonju Kang, Hobyung Chae, Sangmu Bae, Kwonye Kim, Yujin Nam
{"title":"Analysis of Carbon Emissions of Ground and Air Source Cooling and Heating Systems Based on Dynamic Energy Simulation","authors":"Yeonju Kang, Hobyung Chae, Sangmu Bae, Kwonye Kim, Yujin Nam","doi":"10.6110/kjacr.2023.35.10.497","DOIUrl":null,"url":null,"abstract":"In this study, the performance of two renewable energy systems, ground source heat pump (GSHP) system and air source heat pump (ASHP) system, was analyzed through dynamic energy simulation, and carbon emissions were quantitatively calculated through a life cycle assessment method based on the simulation results. The carbon emissions of the energy systems were calculated by dividing the life cycle evaluation stage into four categories: production, construction, operation, and disposal, and the calculation of carbon emissions in the operation stage was based on the annual performance analysis of the dynamic energy simulation. For 1 year of operation, the GSHP system had 14% higher carbon emissions than the ASHP system, while for 20 years of operation, the ASHP system had 39% higher carbon emissions than the GSHP. Compared to the ASHP system, the GSHP system can reduce carbon emissions in the operating stage by 42% per year by securing higher COP, and within 2 years, the carbon amount in the entire process can be lower than in the ASHP system.","PeriodicalId":61437,"journal":{"name":"制冷与空调","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"制冷与空调","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6110/kjacr.2023.35.10.497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the performance of two renewable energy systems, ground source heat pump (GSHP) system and air source heat pump (ASHP) system, was analyzed through dynamic energy simulation, and carbon emissions were quantitatively calculated through a life cycle assessment method based on the simulation results. The carbon emissions of the energy systems were calculated by dividing the life cycle evaluation stage into four categories: production, construction, operation, and disposal, and the calculation of carbon emissions in the operation stage was based on the annual performance analysis of the dynamic energy simulation. For 1 year of operation, the GSHP system had 14% higher carbon emissions than the ASHP system, while for 20 years of operation, the ASHP system had 39% higher carbon emissions than the GSHP. Compared to the ASHP system, the GSHP system can reduce carbon emissions in the operating stage by 42% per year by securing higher COP, and within 2 years, the carbon amount in the entire process can be lower than in the ASHP system.