The kth nearest neighbor method for estimation of entropy changes from molecular ensembles

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-10-02 DOI:10.1002/wcms.1691
Federico Fogolari, Roberto Borelli, Agostino Dovier, Gennaro Esposito
{"title":"The kth nearest neighbor method for estimation of entropy changes from molecular ensembles","authors":"Federico Fogolari,&nbsp;Roberto Borelli,&nbsp;Agostino Dovier,&nbsp;Gennaro Esposito","doi":"10.1002/wcms.1691","DOIUrl":null,"url":null,"abstract":"<p>All processes involving molecular systems entail a balance between associated enthalpic and entropic changes. Molecular dynamics simulations of the end-points of a process provide in a straightforward way the enthalpy as an ensemble average. Obtaining absolute entropies is still an open problem and most commonly pathway methods are used to obtain free energy changes and thereafter entropy changes. The <i>k</i>th nearest neighbor (kNN) method has been first proposed as a general method for entropy estimation in the mathematical community 20 years ago. Later, it has been applied to compute conformational, positional–orientational, and hydration entropies of molecules. Programs to compute entropies from molecular ensembles, for example, from molecular dynamics (MD) trajectories, based on the kNN method, are currently available. The kNN method has distinct advantages over traditional methods, namely that it is possible to address high-dimensional spaces, impossible to treat without loss of resolution or drastic approximations with, for example, histogram-based methods. Application of the method requires understanding the features of: the <i>k</i>th nearest neighbor method for entropy estimation; the variables relevant to biomolecular and in general molecular processes; the metrics associated with such variables; the practical implementation of the method, including requirements and limitations intrinsic to the method; and the applications for conformational, position/orientation and solvation entropy. Coupling the method with general approximations for the multivariable entropy based on mutual information, it is possible to address high dimensional problems like those involving the conformation of proteins, nucleic acids, binding of molecules and hydration.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1691","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All processes involving molecular systems entail a balance between associated enthalpic and entropic changes. Molecular dynamics simulations of the end-points of a process provide in a straightforward way the enthalpy as an ensemble average. Obtaining absolute entropies is still an open problem and most commonly pathway methods are used to obtain free energy changes and thereafter entropy changes. The kth nearest neighbor (kNN) method has been first proposed as a general method for entropy estimation in the mathematical community 20 years ago. Later, it has been applied to compute conformational, positional–orientational, and hydration entropies of molecules. Programs to compute entropies from molecular ensembles, for example, from molecular dynamics (MD) trajectories, based on the kNN method, are currently available. The kNN method has distinct advantages over traditional methods, namely that it is possible to address high-dimensional spaces, impossible to treat without loss of resolution or drastic approximations with, for example, histogram-based methods. Application of the method requires understanding the features of: the kth nearest neighbor method for entropy estimation; the variables relevant to biomolecular and in general molecular processes; the metrics associated with such variables; the practical implementation of the method, including requirements and limitations intrinsic to the method; and the applications for conformational, position/orientation and solvation entropy. Coupling the method with general approximations for the multivariable entropy based on mutual information, it is possible to address high dimensional problems like those involving the conformation of proteins, nucleic acids, binding of molecules and hydration.

This article is categorized under:

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计分子集合熵变化的第 k 次近邻法
所有涉及分子系统的过程都需要在相关的焓变和熵变之间取得平衡。对一个过程的终点进行分子动力学模拟,可以直接获得焓的集合平均值。获得绝对熵仍是一个有待解决的问题,最常用的方法是通过路径来获得自由能变化,进而获得熵变化。20 年前,数学界首次提出 kth 近邻法(kNN)作为熵估算的通用方法。后来,它被用于计算分子的构象熵、位置取向熵和水合熵。目前已有基于 kNN 方法的从分子集合(例如从分子动力学(MD)轨迹)计算熵的程序。与传统方法相比,kNN 方法具有明显的优势,即它可以处理高维空间,而使用基于直方图等的方法则不可能在不损失分辨率或大幅逼近的情况下处理高维空间。应用该方法需要了解以下方面的特点:熵估算的第 k 次近邻法;与生物分子和一般分子过程相关的变量;与这些变量相关的度量;该方法的实际应用,包括该方法的内在要求和限制;以及构象熵、位置/方位熵和溶解熵的应用。将该方法与基于互信息的多变量熵的一般近似值相结合,可以解决高维问题,如涉及蛋白质、核酸、分子结合和水合的构象问题:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1