Implementation and Evaluation of a Federated Learning Framework on Raspberry PI Platforms for IoT 6G Applications

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-10-31 DOI:10.3390/fi15110358
Lorenzo Ridolfi, David Naseh, Swapnil Sadashiv Shinde, Daniele Tarchi
{"title":"Implementation and Evaluation of a Federated Learning Framework on Raspberry PI Platforms for IoT 6G Applications","authors":"Lorenzo Ridolfi, David Naseh, Swapnil Sadashiv Shinde, Daniele Tarchi","doi":"10.3390/fi15110358","DOIUrl":null,"url":null,"abstract":"With the advent of 6G technology, the proliferation of interconnected devices necessitates a robust, fully connected intelligence network. Federated Learning (FL) stands as a key distributed learning technique, showing promise in recent advancements. However, the integration of novel Internet of Things (IoT) applications and virtualization technologies has introduced diverse and heterogeneous devices into wireless networks. This diversity encompasses variations in computation, communication, storage resources, training data, and communication modes among connected nodes. In this context, our study presents a pivotal contribution by analyzing and implementing FL processes tailored for 6G standards. Our work defines a practical FL platform, employing Raspberry Pi devices and virtual machines as client nodes, with a Windows PC serving as a parameter server. We tackle the image classification challenge, implementing the FL model via PyTorch, augmented by the specialized FL library, Flower. Notably, our analysis delves into the impact of computational resources, data availability, and heating issues across heterogeneous device sets. Additionally, we address knowledge transfer and employ pre-trained networks in our FL performance evaluation. This research underscores the indispensable role of artificial intelligence in IoT scenarios within the 6G landscape, providing a comprehensive framework for FL implementation across diverse and heterogeneous devices.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"30 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15110358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of 6G technology, the proliferation of interconnected devices necessitates a robust, fully connected intelligence network. Federated Learning (FL) stands as a key distributed learning technique, showing promise in recent advancements. However, the integration of novel Internet of Things (IoT) applications and virtualization technologies has introduced diverse and heterogeneous devices into wireless networks. This diversity encompasses variations in computation, communication, storage resources, training data, and communication modes among connected nodes. In this context, our study presents a pivotal contribution by analyzing and implementing FL processes tailored for 6G standards. Our work defines a practical FL platform, employing Raspberry Pi devices and virtual machines as client nodes, with a Windows PC serving as a parameter server. We tackle the image classification challenge, implementing the FL model via PyTorch, augmented by the specialized FL library, Flower. Notably, our analysis delves into the impact of computational resources, data availability, and heating issues across heterogeneous device sets. Additionally, we address knowledge transfer and employ pre-trained networks in our FL performance evaluation. This research underscores the indispensable role of artificial intelligence in IoT scenarios within the 6G landscape, providing a comprehensive framework for FL implementation across diverse and heterogeneous devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网6G应用的树莓派平台上联邦学习框架的实现与评估
随着6G技术的出现,互联设备的激增需要一个强大的、完全连接的智能网络。联邦学习(FL)作为一种关键的分布式学习技术,在最近的进展中显示出了前景。然而,新型物联网(IoT)应用和虚拟化技术的集成已经将各种异构设备引入无线网络。这种多样性包括计算、通信、存储资源、训练数据和连接节点之间的通信模式的变化。在此背景下,我们的研究通过分析和实施针对6G标准量身定制的FL流程,做出了关键贡献。我们的工作定义了一个实用的FL平台,使用树莓派设备和虚拟机作为客户端节点,使用Windows PC作为参数服务器。我们解决了图像分类的挑战,通过PyTorch实现FL模型,并通过专门的FL库Flower进行增强。值得注意的是,我们的分析深入研究了跨异构设备集的计算资源、数据可用性和加热问题的影响。此外,我们解决了知识转移问题,并在我们的FL绩效评估中使用了预训练的网络。这项研究强调了人工智能在6G环境下物联网场景中不可或缺的作用,为跨各种异构设备的FL实施提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1