{"title":"Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments","authors":"Mizuki Asano, Takumi Miyoshi, Taku Yamazaki","doi":"10.3390/fi16010017","DOIUrl":null,"url":null,"abstract":"Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices and challenges in replacing or the updating their firmware, adequate security measures have not been implemented. Instead, IoT device identification methods based on traffic analysis have been proposed. Since conventional methods process and analyze traffic data simultaneously, bias in the occurrence rate of traffic patterns has a negative impact on the analysis results. Therefore, this paper proposes an IoT traffic analysis and device identification method based on two-stage clustering in smart home environments. In the first step, traffic patterns are extracted by clustering IoT traffic at a local gateway located in each smart home and subsequently sent to a cloud server. In the second step, the cloud server extracts common traffic units to represent IoT traffic by clustering the patterns obtained in the first step. Two-stage clustering can reduce the impact of data bias, because each cluster extracted in the first clustering is summarized as one value and used as a single data point in the second clustering, regardless of the occurrence rate of traffic patterns. Through the proposed two-stage clustering method, IoT traffic is transformed into time series vector data that consist of common unit patterns and can be identified based on time series representations. Experiments using public IoT traffic datasets indicated that the proposed method could identify 21 IoTs devices with an accuracy of 86.9%. Therefore, we can conclude that traffic analysis using two-stage clustering is effective for improving the clustering quality, device identification, and implementation in distributed environments.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"74 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices and challenges in replacing or the updating their firmware, adequate security measures have not been implemented. Instead, IoT device identification methods based on traffic analysis have been proposed. Since conventional methods process and analyze traffic data simultaneously, bias in the occurrence rate of traffic patterns has a negative impact on the analysis results. Therefore, this paper proposes an IoT traffic analysis and device identification method based on two-stage clustering in smart home environments. In the first step, traffic patterns are extracted by clustering IoT traffic at a local gateway located in each smart home and subsequently sent to a cloud server. In the second step, the cloud server extracts common traffic units to represent IoT traffic by clustering the patterns obtained in the first step. Two-stage clustering can reduce the impact of data bias, because each cluster extracted in the first clustering is summarized as one value and used as a single data point in the second clustering, regardless of the occurrence rate of traffic patterns. Through the proposed two-stage clustering method, IoT traffic is transformed into time series vector data that consist of common unit patterns and can be identified based on time series representations. Experiments using public IoT traffic datasets indicated that the proposed method could identify 21 IoTs devices with an accuracy of 86.9%. Therefore, we can conclude that traffic analysis using two-stage clustering is effective for improving the clustering quality, device identification, and implementation in distributed environments.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.