Xiu Li, Aron Henriksson, Martin Duneld, Jalal Nouri, Yongchao Wu
{"title":"Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation","authors":"Xiu Li, Aron Henriksson, Martin Duneld, Jalal Nouri, Yongchao Wu","doi":"10.3390/fi16010012","DOIUrl":null,"url":null,"abstract":"Educational content recommendation is a cornerstone of AI-enhanced learning. In particular, to facilitate navigating the diverse learning resources available on learning platforms, methods are needed for automatically linking learning materials, e.g., in order to recommend textbook content based on exercises. Such methods are typically based on semantic textual similarity (STS) and the use of embeddings for text representation. However, it remains unclear what types of embeddings should be used for this task. In this study, we carry out an extensive empirical evaluation of embeddings derived from three different types of models: (i) static embeddings trained using a concept-based knowledge graph, (ii) contextual embeddings from a pre-trained language model, and (iii) contextual embeddings from a large language model (LLM). In addition to evaluating the models individually, various ensembles are explored based on different strategies for combining two models in an early vs. late fusion fashion. The evaluation is carried out using digital textbooks in Swedish for three different subjects and two types of exercises. The results show that using contextual embeddings from an LLM leads to superior performance compared to the other models, and that there is no significant improvement when combining these with static embeddings trained using a knowledge graph. When using embeddings derived from a smaller language model, however, it helps to combine them with knowledge graph embeddings. The performance of the best-performing model is high for both types of exercises, resulting in a mean Recall@3 of 0.96 and 0.95 and a mean MRR of 0.87 and 0.86 for quizzes and study questions, respectively, demonstrating the feasibility of using STS based on text embeddings for educational content recommendation. The ability to link digital learning materials in an unsupervised manner—relying only on readily available pre-trained models—facilitates the development of AI-enhanced learning.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":" 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Educational content recommendation is a cornerstone of AI-enhanced learning. In particular, to facilitate navigating the diverse learning resources available on learning platforms, methods are needed for automatically linking learning materials, e.g., in order to recommend textbook content based on exercises. Such methods are typically based on semantic textual similarity (STS) and the use of embeddings for text representation. However, it remains unclear what types of embeddings should be used for this task. In this study, we carry out an extensive empirical evaluation of embeddings derived from three different types of models: (i) static embeddings trained using a concept-based knowledge graph, (ii) contextual embeddings from a pre-trained language model, and (iii) contextual embeddings from a large language model (LLM). In addition to evaluating the models individually, various ensembles are explored based on different strategies for combining two models in an early vs. late fusion fashion. The evaluation is carried out using digital textbooks in Swedish for three different subjects and two types of exercises. The results show that using contextual embeddings from an LLM leads to superior performance compared to the other models, and that there is no significant improvement when combining these with static embeddings trained using a knowledge graph. When using embeddings derived from a smaller language model, however, it helps to combine them with knowledge graph embeddings. The performance of the best-performing model is high for both types of exercises, resulting in a mean Recall@3 of 0.96 and 0.95 and a mean MRR of 0.87 and 0.86 for quizzes and study questions, respectively, demonstrating the feasibility of using STS based on text embeddings for educational content recommendation. The ability to link digital learning materials in an unsupervised manner—relying only on readily available pre-trained models—facilitates the development of AI-enhanced learning.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.