Resource Indexing and Querying in Large Connected Environments

IF 2.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Future Internet Pub Date : 2023-12-30 DOI:10.3390/fi16010015
Fouad Achkouty, Richard Chbeir, Laurent Gallon, Elio Mansour, Antonio Corral
{"title":"Resource Indexing and Querying in Large Connected Environments","authors":"Fouad Achkouty, Richard Chbeir, Laurent Gallon, Elio Mansour, Antonio Corral","doi":"10.3390/fi16010015","DOIUrl":null,"url":null,"abstract":"The proliferation of sensor and actuator devices in Internet of things (IoT) networks has garnered significant attention in recent years. However, the increasing number of IoT devices, and the corresponding resources, has introduced various challenges, particularly in indexing and querying. In essence, resource management has become more complex due to the non-uniform distribution of related devices and their limited capacity. Additionally, the diverse demands of users have further complicated resource indexing. This paper proposes a distributed resource indexing and querying algorithm for large connected environments, specifically designed to address the challenges posed by IoT networks. The algorithm considers both the limited device capacity and the non-uniform distribution of devices, acknowledging that devices cannot store information about the entire environment. Furthermore, it places special emphasis on uncovered zones, to reduce the response time of queries related to these areas. Moreover, the algorithm introduces different types of queries, to cater to various user needs, including fast queries and urgent queries suitable for different scenarios. The effectiveness of the proposed approach was evaluated through extensive experiments covering index creation, coverage, and query execution, yielding promising and insightful results.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":" 30","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of sensor and actuator devices in Internet of things (IoT) networks has garnered significant attention in recent years. However, the increasing number of IoT devices, and the corresponding resources, has introduced various challenges, particularly in indexing and querying. In essence, resource management has become more complex due to the non-uniform distribution of related devices and their limited capacity. Additionally, the diverse demands of users have further complicated resource indexing. This paper proposes a distributed resource indexing and querying algorithm for large connected environments, specifically designed to address the challenges posed by IoT networks. The algorithm considers both the limited device capacity and the non-uniform distribution of devices, acknowledging that devices cannot store information about the entire environment. Furthermore, it places special emphasis on uncovered zones, to reduce the response time of queries related to these areas. Moreover, the algorithm introduces different types of queries, to cater to various user needs, including fast queries and urgent queries suitable for different scenarios. The effectiveness of the proposed approach was evaluated through extensive experiments covering index creation, coverage, and query execution, yielding promising and insightful results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型互联环境中的资源索引和查询
近年来,物联网(IoT)网络中传感器和执行器设备的激增引起了广泛关注。然而,物联网设备和相应资源的不断增加带来了各种挑战,特别是在索引和查询方面。从本质上讲,由于相关设备分布不均匀且容量有限,资源管理变得更加复杂。此外,用户的不同需求也使资源索引变得更加复杂。本文提出了一种适用于大型联网环境的分布式资源索引和查询算法,专门用于应对物联网网络带来的挑战。该算法既考虑了设备容量的有限性,又考虑了设备分布的不均匀性,承认设备无法存储整个环境的信息。此外,该算法还特别重视未覆盖区域,以减少与这些区域相关的查询的响应时间。此外,该算法还引入了不同类型的查询,以满足用户的各种需求,包括适合不同场景的快速查询和紧急查询。通过涵盖索引创建、覆盖范围和查询执行等方面的大量实验,对所提方法的有效性进行了评估,得出了令人鼓舞和富有洞察力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Internet
Future Internet Computer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍: Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.
期刊最新文献
Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing Internet-of-Things Traffic Analysis and Device Identification Based on Two-Stage Clustering in Smart Home Environments Resource Indexing and Querying in Large Connected Environments An Analysis of Methods and Metrics for Task Scheduling in Fog Computing Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1