Data-driven and echo state network-based prediction of wave propagation behavior in dam-break flood

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-11-02 DOI:10.2166/hydro.2023.035
Changli Li, Zheng Han, Yange Li, Ming Li, Weidong Wang, Ningsheng Chen, Guisheng Hu
{"title":"Data-driven and echo state network-based prediction of wave propagation behavior in dam-break flood","authors":"Changli Li, Zheng Han, Yange Li, Ming Li, Weidong Wang, Ningsheng Chen, Guisheng Hu","doi":"10.2166/hydro.2023.035","DOIUrl":null,"url":null,"abstract":"Abstract The computational prediction of wave propagation in dam-break floods is a long-standing problem in hydrodynamics and hydrology. We show that a reservoir computing echo state network (RC-ESN) that is well-trained on a minimal amount of data can accurately predict the long-term dynamic behavior of a one-dimensional dam-break flood. We solve the de Saint-Venant equations for a one-dimensional dam-break flood scenario using the Lax–Wendroff numerical scheme and train the RC-ESN model. The results demonstrate that the RC-ESN model has good prediction ability, as it predicts wave propagation behavior 286 time-steps ahead with a root mean square error smaller than 0.01, outperforming the conventional long short-term memory (LSTM) model, which only predicts 81 time-steps ahead. We also provide a sensitivity analysis of prediction accuracy for RC-ESN's key parameters such as training set size, reservoir size, and spectral radius. Results indicate that the RC-ESN is less dependent on training set size, with a medium reservoir size of 1,200–2,600 sufficient. We confirm that the spectral radius has a complex influence on the prediction accuracy and currently recommend a smaller spectral radius. Even when the initial flow depth of the dam break is changed, the prediction horizon of RC-ESN remains greater than that of LSTM.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.035","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The computational prediction of wave propagation in dam-break floods is a long-standing problem in hydrodynamics and hydrology. We show that a reservoir computing echo state network (RC-ESN) that is well-trained on a minimal amount of data can accurately predict the long-term dynamic behavior of a one-dimensional dam-break flood. We solve the de Saint-Venant equations for a one-dimensional dam-break flood scenario using the Lax–Wendroff numerical scheme and train the RC-ESN model. The results demonstrate that the RC-ESN model has good prediction ability, as it predicts wave propagation behavior 286 time-steps ahead with a root mean square error smaller than 0.01, outperforming the conventional long short-term memory (LSTM) model, which only predicts 81 time-steps ahead. We also provide a sensitivity analysis of prediction accuracy for RC-ESN's key parameters such as training set size, reservoir size, and spectral radius. Results indicate that the RC-ESN is less dependent on training set size, with a medium reservoir size of 1,200–2,600 sufficient. We confirm that the spectral radius has a complex influence on the prediction accuracy and currently recommend a smaller spectral radius. Even when the initial flow depth of the dam break is changed, the prediction horizon of RC-ESN remains greater than that of LSTM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据驱动和回波状态网络的溃坝洪水波浪传播特性预测
摘要溃坝洪水波浪传播的计算预测是水动力学和水文学领域一个长期存在的问题。研究表明,水库计算回声状态网络(RC-ESN)经过少量数据的良好训练,可以准确预测一维溃坝洪水的长期动态行为。采用Lax-Wendroff数值格式求解一维溃坝洪水情景的de Saint-Venant方程,并训练RC-ESN模型。结果表明,RC-ESN模型具有较好的预测能力,可以提前286个时间步预测波的传播行为,且均方根误差小于0.01,优于仅提前81个时间步的传统长短期记忆(LSTM)模型。本文还对RC-ESN的训练集大小、储层大小、谱半径等关键参数的预测精度进行了敏感性分析。结果表明,RC-ESN对训练集大小的依赖较小,1,200-2,600的中等库大小就足够了。我们确认谱半径对预测精度有复杂的影响,目前推荐较小的谱半径。即使改变溃坝初始流深,RC-ESN的预测范围仍大于LSTM的预测范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1