Compact three-way planar power divider with a simple structure

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Microwave and Wireless Technologies Pub Date : 2023-10-12 DOI:10.1017/s1759078723001046
Stelios P. Tsitsos, Ioannis C. Giannenas
{"title":"Compact three-way planar power divider with a simple structure","authors":"Stelios P. Tsitsos, Ioannis C. Giannenas","doi":"10.1017/s1759078723001046","DOIUrl":null,"url":null,"abstract":"Abstract A simple and compact three-way planar power divider, which avoids the floating common node of the isolation resistors, is presented. The proposed structure exhibits a wideband operation (measured frequency range of 1.6–3.3 GHz and bandwidth of 69.4%) with good return loss and isolation characteristics. Transmission line theory is used for the mathematical analysis and extraction of design equations, followed by simulations and experimental measurements that confirm the predicted results. The proposed divider achieves an equal power split (∼32%, −4.9 ± 0.4 dB insertion loss) between the input and each output port. The measured return loss is better than −10 dB at all ports, and the measured maximum isolation is close to −30 dB. The proposed design exhibits a fully planar structure, thus eliminating the need for a floating common node for the isolation resistors. Additionally, its structure is much simpler (i.e., no coupled lines, crossovers, or lumped capacitors are required) than other designs, achieves wideband operation, and provides design simplicity, flexibility, and easy implementation. Despite its simple noncomplicated structure, the proposed three-way planar divider achieves similar (or in some cases, better) performance and size than other more complicated structures. Furthermore, it can be expanded to an n -way structure.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A simple and compact three-way planar power divider, which avoids the floating common node of the isolation resistors, is presented. The proposed structure exhibits a wideband operation (measured frequency range of 1.6–3.3 GHz and bandwidth of 69.4%) with good return loss and isolation characteristics. Transmission line theory is used for the mathematical analysis and extraction of design equations, followed by simulations and experimental measurements that confirm the predicted results. The proposed divider achieves an equal power split (∼32%, −4.9 ± 0.4 dB insertion loss) between the input and each output port. The measured return loss is better than −10 dB at all ports, and the measured maximum isolation is close to −30 dB. The proposed design exhibits a fully planar structure, thus eliminating the need for a floating common node for the isolation resistors. Additionally, its structure is much simpler (i.e., no coupled lines, crossovers, or lumped capacitors are required) than other designs, achieves wideband operation, and provides design simplicity, flexibility, and easy implementation. Despite its simple noncomplicated structure, the proposed three-way planar divider achieves similar (or in some cases, better) performance and size than other more complicated structures. Furthermore, it can be expanded to an n -way structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紧凑的三向平面功率分配器,结构简单
摘要提出了一种结构简单、结构紧凑的三路平面功率分压器,避免了隔离电阻公共节点的浮动。该结构具有良好的回波损耗和隔离特性,具有宽带工作特性(测量频率范围为1.6 ~ 3.3 GHz,带宽为69.4%)。利用传输线理论进行数学分析和设计方程的提取,然后进行仿真和实验测量,以证实预测结果。所提出的分频器在输入和每个输出端口之间实现了相等的功率分配(~ 32%,−4.9±0.4 dB插入损耗)。各端口回波损耗均优于−10 dB,最大隔离度接近−30 dB。提出的设计展示了一个全平面结构,从而消除了隔离电阻的浮动公共节点的需要。此外,它的结构比其他设计更简单(即不需要耦合线、交叉电路或集总电容器),实现宽带操作,并提供设计简单、灵活和易于实现。尽管其结构简单而不复杂,但所提出的三向平面分压器实现了与其他更复杂的结构相似(或在某些情况下更好)的性能和尺寸。此外,它还可以扩展为n向结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
期刊最新文献
A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network Air-filled substrate integrated waveguide bandpass filter based on miniaturized non-resonant node structure Design of a broadband high-efficiency power amplifier based on a rectangular double transmission line structure A broadband metasurface antenna with multimode resonance Design of a broadband high-efficiency power amplifier based on ring-resonant filter with compensation architecture and a series of continuous modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1