{"title":"A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network","authors":"Qianying Yan, Yanwei Huang, Wenzhao Zhang, Xin Hou, Mengqing Zhang, Xiangru Wang, Feng Liang","doi":"10.1017/s175907872400014x","DOIUrl":null,"url":null,"abstract":"Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s175907872400014x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.