Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.
{"title":"A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network","authors":"Qianying Yan, Yanwei Huang, Wenzhao Zhang, Xin Hou, Mengqing Zhang, Xiangru Wang, Feng Liang","doi":"10.1017/s175907872400014x","DOIUrl":"https://doi.org/10.1017/s175907872400014x","url":null,"abstract":"Liquid crystal microwave phased arrays (LC-MPAs) are regarded as an ideal approach to realize compact antennas owing to their advantages in cost, size, weight, and power consumption. However, the shortcoming in low radiation deflection efficiency has been one of LC-MPAs’ main application limitations. To optimize the steering performance of LC-MPAs, it is essential to model the channel imperfections and compensate for the phase errors. In this paper, a phase error estimation model is built by training a neural network to establish a nonlinear relationship between the near-field phase error and the far-field pattern, hence realizing fast calibration for LC-MPAs within several measured patterns. Simulations and experiments on a 64-channel, two-dimensional planar antenna were conducted to validate this method. The results show that this method offers precise phase error estimations of 3.58° on average, realizes a fast calibration process with several field-measured radiation patterns, and improves the performances of the LC-MPA by approximately 4%–10% in deflection efficiency at different steering angles.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"21 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1017/s1759078724000084
Yunlong Li, Changjun Tian, Shaozhuo Li, Peng Chen, Yun Li, Kai Yang
This paper proposes an air-filled substrate integrated waveguide (AFSIW) bandpass filter with a miniaturized non-resonant node (NRN). The NRN structure is introduced between the three resonators, and its size is smaller than the resonator size, which can realize the NRN structure’s miniaturization and reduce the model’s size. The NRN size of this filter is 41% of the NRN size of the existing AFSIW filter. This filter also introduces a transmission zero (TZ) above the passband. The measured results show that the filter’s center frequency is 20.73 GHz, and the bandwidth is 0.86 GHz. The insertion loss in the passband is 0.95 dB, and the return loss is better than 23 dB. Due to the TZ in the upper stopband, the AFSIW filter obtained good selectivity.
{"title":"Air-filled substrate integrated waveguide bandpass filter based on miniaturized non-resonant node structure","authors":"Yunlong Li, Changjun Tian, Shaozhuo Li, Peng Chen, Yun Li, Kai Yang","doi":"10.1017/s1759078724000084","DOIUrl":"https://doi.org/10.1017/s1759078724000084","url":null,"abstract":"This paper proposes an air-filled substrate integrated waveguide (AFSIW) bandpass filter with a miniaturized non-resonant node (NRN). The NRN structure is introduced between the three resonators, and its size is smaller than the resonator size, which can realize the NRN structure’s miniaturization and reduce the model’s size. The NRN size of this filter is 41% of the NRN size of the existing AFSIW filter. This filter also introduces a transmission zero (TZ) above the passband. The measured results show that the filter’s center frequency is 20.73 GHz, and the bandwidth is 0.86 GHz. The insertion loss in the passband is 0.95 dB, and the return loss is better than 23 dB. Due to the TZ in the upper stopband, the AFSIW filter obtained good selectivity.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"147 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1017/s1759078724000606
Luyu Zhang, Zhiwei Zhang, Chenlu Wang, Chao Gu
This paper presents a design methodology for a broadband high-efficiency power amplifier (PA). The large available impedance space of the extended continuous Class-GF mode is employed. A novel output matching network of the PA consisting of a rectangular double transmission line structure is proposed to meet impedance requirements. To validate the effectiveness of this structure, a high-efficiency PA operating in 0.8–3.0 GHz is designed using a CGH40010F GaN transistor. The measured results demonstrate that the drain efficiency falls within the range of 63.2%–71.9%, the output power varies from 40.2 to 42.2 dBm, and the gain ranges from 9.4 to 11.3 dB within the frequency band of 0.8–3 GHz. The realized PA exhibits an extremely competitive relative bandwidth of 115.8%.
{"title":"Design of a broadband high-efficiency power amplifier based on a rectangular double transmission line structure","authors":"Luyu Zhang, Zhiwei Zhang, Chenlu Wang, Chao Gu","doi":"10.1017/s1759078724000606","DOIUrl":"https://doi.org/10.1017/s1759078724000606","url":null,"abstract":"This paper presents a design methodology for a broadband high-efficiency power amplifier (PA). The large available impedance space of the extended continuous Class-GF mode is employed. A novel output matching network of the PA consisting of a rectangular double transmission line structure is proposed to meet impedance requirements. To validate the effectiveness of this structure, a high-efficiency PA operating in 0.8–3.0 GHz is designed using a CGH40010F GaN transistor. The measured results demonstrate that the drain efficiency falls within the range of 63.2%–71.9%, the output power varies from 40.2 to 42.2 dBm, and the gain ranges from 9.4 to 11.3 dB within the frequency band of 0.8–3 GHz. The realized PA exhibits an extremely competitive relative bandwidth of 115.8%.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"215 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1017/s1759078724000539
Sen Xu, JianFeng Wu, Xiang Chen
A systematic design approach is presented for the design of broadband high-efficiency power amplifiers (PAs) by combining an improved ring-resonant filter matching network with a series of continuous modes. The improved ring-resonant matching network presented can effectively enhance out-of-band attenuation and sharp roll-off characteristics by adding a compensation structure with parallel stub. To verify the proposed design theory, a 10-W GaN HEMT device is designed and fabricated. The test results indicate that from the operating frequency band of 0.55−3.3 GHz with a relative bandwidth of 142.9%, a saturated output power of 38.5−42 dBm, drain efficiency of 58.2−70.3%, and a gain of 8.5–12 dB can be achieved under 3 dB gain compression, indicating the rationality of the design theory.
通过将改进的环形谐振滤波器匹配网络与一系列连续模式相结合,提出了一种设计宽带高效功率放大器(PA)的系统设计方法。所提出的改进型环形谐振匹配网络通过添加带有并联存根的补偿结构,可有效增强带外衰减和尖锐滚降特性。为了验证所提出的设计理论,我们设计并制造了一个 10 瓦的 GaN HEMT 器件。测试结果表明,在相对带宽为 142.9% 的 0.55-3.3 GHz 工作频段内,可实现 38.5-42 dBm 的饱和输出功率、58.2-70.3% 的漏极效率以及 8.5-12 dB 的增益,增益压缩为 3 dB,这表明了设计理论的合理性。
{"title":"Design of a broadband high-efficiency power amplifier based on ring-resonant filter with compensation architecture and a series of continuous modes","authors":"Sen Xu, JianFeng Wu, Xiang Chen","doi":"10.1017/s1759078724000539","DOIUrl":"https://doi.org/10.1017/s1759078724000539","url":null,"abstract":"A systematic design approach is presented for the design of broadband high-efficiency power amplifiers (PAs) by combining an improved ring-resonant filter matching network with a series of continuous modes. The improved ring-resonant matching network presented can effectively enhance out-of-band attenuation and sharp roll-off characteristics by adding a compensation structure with parallel stub. To verify the proposed design theory, a 10-W GaN HEMT device is designed and fabricated. The test results indicate that from the operating frequency band of 0.55−3.3 GHz with a relative bandwidth of 142.9%, a saturated output power of 38.5−42 dBm, drain efficiency of 58.2−70.3%, and a gain of 8.5–12 dB can be achieved under 3 dB gain compression, indicating the rationality of the design theory.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"150 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1017/s1759078724000588
Hui Pang, Jianping Zhao, Juan Xu
A multiresonance metasurface antenna is proposed which has wide bandwidth and low-profile. The characteristic mode theory is used to design antenna structure. Three ideal modes are obtained by adjusting the mode currents to optimize the radiation performance of the antenna. The characteristic mode analysis is used to model, analyze, and optimize the antenna, revealing the physical characteristics of the metasurface antenna. The slot is not only used as the feeding structure for exciting characteristic modes but also introduces a slot mode. Combining the slot mode with the metasurface modes, the bandwidth of the antenna is broadened. The antenna element has a relative bandwidth of 43.7%. To obtain higher gain, a 2 × 2 antenna array is proposed. The antenna array is simulated, fabricated, and measured. The results show that the relative bandwidth of the proposed metasurface antenna array is 31.6% with the gain of 12.3–15.8 dBi over the operating bandwidth.
{"title":"A broadband metasurface antenna with multimode resonance","authors":"Hui Pang, Jianping Zhao, Juan Xu","doi":"10.1017/s1759078724000588","DOIUrl":"https://doi.org/10.1017/s1759078724000588","url":null,"abstract":"A multiresonance metasurface antenna is proposed which has wide bandwidth and low-profile. The characteristic mode theory is used to design antenna structure. Three ideal modes are obtained by adjusting the mode currents to optimize the radiation performance of the antenna. The characteristic mode analysis is used to model, analyze, and optimize the antenna, revealing the physical characteristics of the metasurface antenna. The slot is not only used as the feeding structure for exciting characteristic modes but also introduces a slot mode. Combining the slot mode with the metasurface modes, the bandwidth of the antenna is broadened. The antenna element has a relative bandwidth of 43.7%. To obtain higher gain, a 2 × 2 antenna array is proposed. The antenna array is simulated, fabricated, and measured. The results show that the relative bandwidth of the proposed metasurface antenna array is 31.6% with the gain of 12.3–15.8 dBi over the operating bandwidth.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"49 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research article proposes a dual-sense dual-port wideband circularly polarized (CP) multi-input multi-output (MIMO) antenna designed for Wi-Fi 6E applications. The main novelty lies in achieving CP for both ports using a truncated rectangular-shaped aperture. By incorporating design and spatial diversity and defective ground structure between the two radiators, the design improves isolation and enables the antenna to generate Left-Hand Circular Polarization (LHCP)depending on the selected feed port. The proposed MIMO rectangular dielectric resonator antenna demonstrates an impressive impedance-matching bandwidth (IBW)from 5.5 to 8.0 GHz (37.10%) as well as an axial ratio bandwidth (ARBW) covering from 6.0 to 6.55 GHz (12.20%). Additionally, the dual-port wideband CP MIMO antenna exhibits satisfactory diversity performance parameters. To validate the simulated results, a physical prototype is fabricated and subjected to experimental testing. The measured outcomes of the fabricated model align closely with the simulated results, confirming the accuracy of the design. With both MIMO and CP capabilities and improved isolation, this proposed model proves beneficial in reducing latency and minimizing the impact of multipath fading. Therefore, it stands as an excellent choice for future devices utilizing the Wi-Fi 6E band due to its broad IBW and overlappingAR.
本文提出了一种双感应双端口宽带圆极化(CP)多输入多输出(MIMO)天线,设计用于 Wi-Fi 6E 应用。其主要创新点在于利用截断矩形孔径实现两个端口的 CP。通过在两个辐射器之间加入设计和空间分集以及有缺陷的接地结构,该设计提高了隔离度,并使天线能够根据所选的馈电端口产生左旋圆极化(LHCP)。所提出的 MIMO 矩形介质谐振器天线的阻抗匹配带宽(IBW)从 5.5 GHz 到 8.0 GHz(37.10%),轴向比带宽(ARBW)从 6.0 GHz 到 6.55 GHz(12.20%),令人印象深刻。此外,双端口宽带 CP MIMO 天线的分集性能参数也令人满意。为了验证模拟结果,我们制作了一个物理原型并进行了实验测试。制作模型的测量结果与模拟结果非常吻合,证实了设计的准确性。该模型具有 MIMO 和 CP 功能,并改进了隔离性能,因此在减少延迟和最大限度地降低多径衰落的影响方面大有裨益。因此,由于其宽广的 IBW 和重叠AR,它是未来使用 Wi-Fi 6E 频段的设备的绝佳选择。
{"title":"Circularly polarized dual-port MIMO DRA for future Wi-Fi 6E applications","authors":"Javed Iqbal, Usman Illahi, Shahid Mahmood Ramay, Mohamad Ismail Sulaiman","doi":"10.1017/s1759078724000576","DOIUrl":"https://doi.org/10.1017/s1759078724000576","url":null,"abstract":"This research article proposes a dual-sense dual-port wideband circularly polarized (CP) multi-input multi-output (MIMO) antenna designed for Wi-Fi 6E applications. The main novelty lies in achieving CP for both ports using a truncated rectangular-shaped aperture. By incorporating design and spatial diversity and defective ground structure between the two radiators, the design improves isolation and enables the antenna to generate Left-Hand Circular Polarization (LHCP)depending on the selected feed port. The proposed MIMO rectangular dielectric resonator antenna demonstrates an impressive impedance-matching bandwidth (IBW)from 5.5 to 8.0 GHz (37.10%) as well as an axial ratio bandwidth (ARBW) covering from 6.0 to 6.55 GHz (12.20%). Additionally, the dual-port wideband CP MIMO antenna exhibits satisfactory diversity performance parameters. To validate the simulated results, a physical prototype is fabricated and subjected to experimental testing. The measured outcomes of the fabricated model align closely with the simulated results, confirming the accuracy of the design. With both MIMO and CP capabilities and improved isolation, this proposed model proves beneficial in reducing latency and minimizing the impact of multipath fading. Therefore, it stands as an excellent choice for future devices utilizing the Wi-Fi 6E band due to its broad IBW and overlappingAR.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"36 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1017/s1759078724000527
Davide Arenare, Fabio Pelorossi, Filippo Concaro, Marco Pasian
Large reflector antennas, such as the European Space Agency deep space antennas (DSAs), practically always require struts to support the sub-reflector. While inevitable, they deteriorate the antenna performance. To minimize this deterioration, it is pivotal to understand the role played by different features, including struts diameter and shape. This paper proposes a detailed numerical investigation on the impact of these features on antenna efficiency and side lobes, for a test case comprising both DSA3 and DSA4. It is demonstrated, for the first time in a comprehensive and quantitative way that includes different permutations for the strut design, that both features are significant to define the deterioration, thus providing a significant feedback for struts design.
{"title":"On the effects of struts diameter and shape on the European Space Agency deep space antenna directivity and first side lobe","authors":"Davide Arenare, Fabio Pelorossi, Filippo Concaro, Marco Pasian","doi":"10.1017/s1759078724000527","DOIUrl":"https://doi.org/10.1017/s1759078724000527","url":null,"abstract":"Large reflector antennas, such as the European Space Agency deep space antennas (DSAs), practically always require struts to support the sub-reflector. While inevitable, they deteriorate the antenna performance. To minimize this deterioration, it is pivotal to understand the role played by different features, including struts diameter and shape. This paper proposes a detailed numerical investigation on the impact of these features on antenna efficiency and side lobes, for a test case comprising both DSA3 and DSA4. It is demonstrated, for the first time in a comprehensive and quantitative way that includes different permutations for the strut design, that both features are significant to define the deterioration, thus providing a significant feedback for struts design.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"86 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A bandwidth expansion strategy for ultra-wideband power amplifiers (PAs) is presented in this letter by adopting a parallel impedance matching architecture. This design strategy can effectively reduce the impedance conversion ratio between the load and the target impedance of the PA, thereby providing a feasible solution for broadband impedance matching. Subsequently, a commercially available 10 W gallium nitride device and a two-stage Wilkinson power divider network are combined to achieve the verification of the proposed theory. The results of the measurement show that within the target frequency band of 0.9–3.9 GHz, 58.5–71.2% of the drain efficiency and 9.1–12 dB of gain can be achieved with a saturated output power of 39.1–42 dBm.
本文通过采用并行阻抗匹配架构,提出了一种超宽带功率放大器(PA)的带宽扩展策略。这种设计策略可有效降低功率放大器负载与目标阻抗之间的阻抗转换率,从而为宽带阻抗匹配提供可行的解决方案。随后,结合市售的 10 W 氮化镓器件和两级威尔金森功率分压器网络,对所提出的理论进行了验证。测量结果表明,在 0.9-3.9 GHz 的目标频段内,可以实现 58.5-71.2% 的漏极效率和 9.1-12 dB 的增益,饱和输出功率为 39.1-42 dBm。
{"title":"An ultra-wideband power amplifier designed through a bandwidth expansion strategy","authors":"Xuefei Xuan, Zhiqun Cheng, Brendan Hayes, Zhiwei Zhang, Tingwei Gong, Shenbing Wu, Chao Le","doi":"10.1017/s1759078724000552","DOIUrl":"https://doi.org/10.1017/s1759078724000552","url":null,"abstract":"A bandwidth expansion strategy for ultra-wideband power amplifiers (PAs) is presented in this letter by adopting a parallel impedance matching architecture. This design strategy can effectively reduce the impedance conversion ratio between the load and the target impedance of the PA, thereby providing a feasible solution for broadband impedance matching. Subsequently, a commercially available 10 W gallium nitride device and a two-stage Wilkinson power divider network are combined to achieve the verification of the proposed theory. The results of the measurement show that within the target frequency band of 0.9–3.9 GHz, 58.5–71.2% of the drain efficiency and 9.1–12 dB of gain can be achieved with a saturated output power of 39.1–42 dBm.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"32 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1017/s1759078724000382
Ashwani Kumar, Shatish K. Gautam, Ravi K. Arya, Maifuz Ali, Praduman P. Singh, Anand K. Verma, Raj Mittra
Normally, the reported gain of the microstrip patch antenna is within 8 dBi. Using properly located three shorting pins on three bisectors, the present work reports a method to convert the non-radiating TM11 mode of equilateral triangular patch antennas (ETPAs) to a deformed TM11 radiating mode. The boresight gain of ETPA operating in TM11 mode is enhanced from −10.75 to 12.1 dBi at 5.43 GHz. The boresight measured gain is further enhanced to 14.2 dBi at 5.52 GHz by using a triangular surface-mounted short horn (SMSH) of about ${{lambda }}/5$ height. The aperture efficiency of the ETPA with the shorting pins is 84.2%. The aperture efficiency is further improved to 94.2% using the SMSH. The measured boresight cross-polarization and side-lobe level are −40 and −29 dB, respectively. The nature of the electricfield and surface current distribution is analyzed, using both the characteristic mode analysis method and high-frequency structure simulator, to understand the role of shorting pin and coaxial feed in converting the non-radiating TM11 mode to the radiating mode. A systematic design process also is presented for a fast design of shorting pin-loaded ETPA on the suitable substrate at a specified frequency.
{"title":"High-gain TM11 mode equilateral triangular patch antenna with shorting pins and triangular short horn","authors":"Ashwani Kumar, Shatish K. Gautam, Ravi K. Arya, Maifuz Ali, Praduman P. Singh, Anand K. Verma, Raj Mittra","doi":"10.1017/s1759078724000382","DOIUrl":"https://doi.org/10.1017/s1759078724000382","url":null,"abstract":"Normally, the reported gain of the microstrip patch antenna is within 8 dBi. Using properly located three shorting pins on three bisectors, the present work reports a method to convert the non-radiating TM<jats:sub>11</jats:sub> mode of equilateral triangular patch antennas (ETPAs) to a deformed TM<jats:sub>11</jats:sub> radiating mode. The boresight gain of ETPA operating in TM<jats:sub>11</jats:sub> mode is enhanced from −10.75 to 12.1 dBi at 5.43 GHz. The boresight measured gain is further enhanced to 14.2 dBi at 5.52 GHz by using a triangular surface-mounted short horn (SMSH) of about <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S1759078724000382_inline1.png\"/> <jats:tex-math>${{lambda }}/5$</jats:tex-math> </jats:alternatives> </jats:inline-formula> height. The aperture efficiency of the ETPA with the shorting pins is 84.2%. The aperture efficiency is further improved to 94.2% using the SMSH. The measured boresight cross-polarization and side-lobe level are −40 and −29 dB, respectively. The nature of the electricfield and surface current distribution is analyzed, using both the characteristic mode analysis method and high-frequency structure simulator, to understand the role of shorting pin and coaxial feed in converting the non-radiating TM<jats:sub>11</jats:sub> mode to the radiating mode. A systematic design process also is presented for a fast design of shorting pin-loaded ETPA on the suitable substrate at a specified frequency.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"134 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a method for measuring whole-body specific absorption rate (WBSAR) of millimeter-wave base stations (BSs) in a reverberation chamber (RC). The absorbed power in the phantom from the equipment under test (EUT) and hence WBSAR is determined as the difference between the total radiated power with and without the phantom. A chamber transfer function is determined and used to include only the absorption in the phantom due to direct illumination from the EUT, i.e., excluding absorption due to the RC multipath reflections. The measurement method was evaluated at 28 GHz using a horn antenna and a commercial massive multi-input–multi-output BS. The experimental results are in good agreement with simulations. The proposed method allows for measurements of WBSAR within 3 minutes, which is much shorter than traditional approaches. The method is suitable for compliance assessments of BS products with the International Commission on Non-Ionizing Radiation Protection 2020 electromagnetic field exposure guidelines, which extend the applicability of WBSAR as basic restrictions up to 300 GHz.
{"title":"Whole-body SAR measurements of millimeter-wave base station in reverberation chambers","authors":"Jens Eilers Bischoff, Paramananda Joshi, Davide Colombi, Bo Xu, Christer Törnevik","doi":"10.1017/s1759078724000515","DOIUrl":"https://doi.org/10.1017/s1759078724000515","url":null,"abstract":"This paper presents a method for measuring whole-body specific absorption rate (WBSAR) of millimeter-wave base stations (BSs) in a reverberation chamber (RC). The absorbed power in the phantom from the equipment under test (EUT) and hence WBSAR is determined as the difference between the total radiated power with and without the phantom. A chamber transfer function is determined and used to include only the absorption in the phantom due to direct illumination from the EUT, i.e., excluding absorption due to the RC multipath reflections. The measurement method was evaluated at 28 GHz using a horn antenna and a commercial massive multi-input–multi-output BS. The experimental results are in good agreement with simulations. The proposed method allows for measurements of WBSAR within 3 minutes, which is much shorter than traditional approaches. The method is suitable for compliance assessments of BS products with the International Commission on Non-Ionizing Radiation Protection 2020 electromagnetic field exposure guidelines, which extend the applicability of WBSAR as basic restrictions up to 300 GHz.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}