Marko Radovanović, Darko Božanić, Duško Tešić, Adis Puška, Ibrahim M. Hezam, Chiranjibe Jana
{"title":"APPLICATION OF HYBRID DIBR-FUCOM-LMAW-BONFERRONI-GREY-EDAS MODEL IN MULTICRITERIA DECISION-MAKING","authors":"Marko Radovanović, Darko Božanić, Duško Tešić, Adis Puška, Ibrahim M. Hezam, Chiranjibe Jana","doi":"10.22190/fume230824036r","DOIUrl":null,"url":null,"abstract":"The selection of unmanned aerial vehicles for different purposes is a frequent topic of research. This paper presents a hybrid model of an unmanned aerial vehicle (UAV) selection using the Defining Interrelationships Between Ranked criteria (DIBR), Full Consistency Method (FUCOM), Logarithm Methodology of Additive Weights (LMAW) and grey - Evaluation based on Distance from Average Solution (G-EDAS) methods. The above-mentioned model is tested and confirmed in a case study. First of all, in the paper are defined the criteria conditioning the selection, and then with the help of experts and by applying the DIBR, FUCOM and LMAW methods, the weight coefficients of the criteria are determined. The final values of the weight coefficients are obtained by aggregating the values of the criteria weights from all the three methods using the Bonferroni aggregator. Ranking and selection of the optimal UAV from twenty-three defined alternatives is carried out using the G-EDAS method. Sensitivity analysis confirmed a high degree of consistency of the solutions obtained using other MCDM methods, as well as changing the criteria weight coefficients. The proposed model has proved to be stable; its application is also possible in other areas and it is a reliable tool for decision-makers during the selection process.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":10.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fume230824036r","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selection of unmanned aerial vehicles for different purposes is a frequent topic of research. This paper presents a hybrid model of an unmanned aerial vehicle (UAV) selection using the Defining Interrelationships Between Ranked criteria (DIBR), Full Consistency Method (FUCOM), Logarithm Methodology of Additive Weights (LMAW) and grey - Evaluation based on Distance from Average Solution (G-EDAS) methods. The above-mentioned model is tested and confirmed in a case study. First of all, in the paper are defined the criteria conditioning the selection, and then with the help of experts and by applying the DIBR, FUCOM and LMAW methods, the weight coefficients of the criteria are determined. The final values of the weight coefficients are obtained by aggregating the values of the criteria weights from all the three methods using the Bonferroni aggregator. Ranking and selection of the optimal UAV from twenty-three defined alternatives is carried out using the G-EDAS method. Sensitivity analysis confirmed a high degree of consistency of the solutions obtained using other MCDM methods, as well as changing the criteria weight coefficients. The proposed model has proved to be stable; its application is also possible in other areas and it is a reliable tool for decision-makers during the selection process.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.