Calculation of high-duty cold reduction rollers grinding cycles based on radial force cycle optimization

S. Bratan, Vasiliy Golovin, Yuriy Novosyolov, Irina Dymchenko
{"title":"Calculation of high-duty cold reduction rollers grinding cycles based on radial force cycle optimization","authors":"S. Bratan, Vasiliy Golovin, Yuriy Novosyolov, Irina Dymchenko","doi":"10.30987/2223-4608-2023-30-38","DOIUrl":null,"url":null,"abstract":"Currently, the grinding operation of fabrication mill rollers through the use of fine-grained wheels is the most progressive method of finishing, because it saves from labor-intensive finishing processes in the technological cycle allowing to get a desired accuracy of the size, shape, surface roughness, physical and mechanical properties of the work material along with the reduction of manufacturing content. Considering that grinding rate of fine-grained wheels increases with an depth-of-cut increase in a single grain, the method of calculating grinding cycles by radial force for finishing of cold reduction rollers using fine-grained abrasive wheels is viewed. The calculation was carried out, and the optimal modes of a high-performance grinding cycle of parts made of steel 9X2, 55...60 HRC, wheels 1-400x50x203 63C M14 CM 8B with a change in the radial component of the cutting force at the cycle stages were determined. For experimental verification of the calculated cycle, grinding samples 
 d×l = 65×250 mm at a constant radial force corresponding to a given surface roughness and with a change in radial force were tested. Radial grinding force was set by technological system tightness and maintained by a device for registering a radial force within each run. During the experiments, the following measurements: removal of metal to diameter with a lever bracket; surface roughness parameters on a profilometer-profilograph mod. 201 were carried out. The conducted tests proved the effectiveness of design cycles with a change in radial force. When using the proposed cycles, a given surface roughness is provided, while the productivity of the operation increases by 2,0 – 2,5 times.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science intensive technologies in mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2223-4608-2023-30-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the grinding operation of fabrication mill rollers through the use of fine-grained wheels is the most progressive method of finishing, because it saves from labor-intensive finishing processes in the technological cycle allowing to get a desired accuracy of the size, shape, surface roughness, physical and mechanical properties of the work material along with the reduction of manufacturing content. Considering that grinding rate of fine-grained wheels increases with an depth-of-cut increase in a single grain, the method of calculating grinding cycles by radial force for finishing of cold reduction rollers using fine-grained abrasive wheels is viewed. The calculation was carried out, and the optimal modes of a high-performance grinding cycle of parts made of steel 9X2, 55...60 HRC, wheels 1-400x50x203 63C M14 CM 8B with a change in the radial component of the cutting force at the cycle stages were determined. For experimental verification of the calculated cycle, grinding samples d×l = 65×250 mm at a constant radial force corresponding to a given surface roughness and with a change in radial force were tested. Radial grinding force was set by technological system tightness and maintained by a device for registering a radial force within each run. During the experiments, the following measurements: removal of metal to diameter with a lever bracket; surface roughness parameters on a profilometer-profilograph mod. 201 were carried out. The conducted tests proved the effectiveness of design cycles with a change in radial force. When using the proposed cycles, a given surface roughness is provided, while the productivity of the operation increases by 2,0 – 2,5 times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向力循环优化的高负荷冷还原辊磨削循环计算
目前,通过使用细粒度车轮的加工磨辊的磨削操作是最先进的精加工方法,因为它节省了技术周期中劳动密集型的精加工过程,从而可以获得所需的尺寸,形状,表面粗糙度,工作材料的物理和机械性能的精度,同时减少了制造含量。考虑到细粒砂轮磨削速率随单粒切削深度的增加而增加,提出了用径向力计算冷还原辊精加工磨削周期的方法。对9X2、55、60等钢件的高性能磨削循环进行了优化计算测定了HRC、车轮1-400x50x203 63C M14 CM 8B随径向分量的变化在循环阶段的切削力。对于计算周期的实验验证,研磨样品 D×l = 65×250 mm在恒定径向力下对应于给定表面粗糙度,并随径向力的变化进行了测试。径向磨削力由工艺系统紧度设定,并由一个装置在每次运行中记录径向力。在实验过程中,进行以下测量:用杠杆支架将金属移至直径;在轮廓仪-轮廓仪模型201上进行了表面粗糙度参数的计算。所进行的试验证明了设计周期随径向力变化的有效性。当使用建议的循环时,提供给定的表面粗糙度,而操作的生产率增加2,0 - 2,5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creation and development of highly reliable information and control systems with elements of artificial intelligence for advanced technological complexes Automated technological support and improvement of the operational properties of machine parts Gas-cycling processes of chemical and thermal treatment: regulation of the nitride layer structure for iron and steel Mechanical product structure Cutting ability features for new high-strength titanium alloys with an ultrafine-grained structure used for aircraft parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1