Creation and development of highly reliable information and control systems with elements of artificial intelligence for advanced technological complexes
{"title":"Creation and development of highly reliable information and control systems with elements of artificial intelligence for advanced technological complexes","authors":"B. Brzhozovsky, V. Martynov, Marina Brovkova3","doi":"10.30987/2223-4608-2024-34-42","DOIUrl":null,"url":null,"abstract":"Methods and means of improving complex technological equipment are shown through the operational assessment of the quality of implemented technologies realtime. This is proved by the fact that implementing technological operations on universal equipment each time requires modeling dynamic processes and taking into account a large number of uncertainty factors that affect the geometry generation quality. It is not possible to be a priori aware of these factors. There is a need to create new information technologies with the possibilities of universal application for immediate understanding of various dynamic processes in diagnostic, identification and control systems. Standard computer systems for statistical analysis and optimization of dynamic processes with the possibilities of universal application for various implementations of modern technologies have been introduced. The possibility of using integrative criteria and methods of artificial intelligence for diagnostic systems, identification and control of advanced technological complexes is shown. The implementation of information systems for the management of complex objects of various technological purposes is presented. The proposed modeling methods and approaches have been tested at various machine-building enterprises when processing parts on turning, milling and grinding machines, both universal and CNC. The research results made it possible to implement new principles of automated control and optimal adjustment of technological processes in real time and create an automated system for evaluating their quality, which allows increasing the efficiency and reliability of management decisions by conducting optimization directly on operating equipment. Based on the methods and approaches described above, new results have been obtained in the implementation of plasma technologies for the modification of geometrically complex surfaces of mechanical engineering products aimed at increasing wear resistance, hardness and other technical characteristics of the working surfaces of precision engineering products. A fairly complete approbation of methods, approaches, procedures and decision-making criteria for various technologies allows them to be recommended for universal applicability.","PeriodicalId":21570,"journal":{"name":"Science intensive technologies in mechanical engineering","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science intensive technologies in mechanical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/2223-4608-2024-34-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Methods and means of improving complex technological equipment are shown through the operational assessment of the quality of implemented technologies realtime. This is proved by the fact that implementing technological operations on universal equipment each time requires modeling dynamic processes and taking into account a large number of uncertainty factors that affect the geometry generation quality. It is not possible to be a priori aware of these factors. There is a need to create new information technologies with the possibilities of universal application for immediate understanding of various dynamic processes in diagnostic, identification and control systems. Standard computer systems for statistical analysis and optimization of dynamic processes with the possibilities of universal application for various implementations of modern technologies have been introduced. The possibility of using integrative criteria and methods of artificial intelligence for diagnostic systems, identification and control of advanced technological complexes is shown. The implementation of information systems for the management of complex objects of various technological purposes is presented. The proposed modeling methods and approaches have been tested at various machine-building enterprises when processing parts on turning, milling and grinding machines, both universal and CNC. The research results made it possible to implement new principles of automated control and optimal adjustment of technological processes in real time and create an automated system for evaluating their quality, which allows increasing the efficiency and reliability of management decisions by conducting optimization directly on operating equipment. Based on the methods and approaches described above, new results have been obtained in the implementation of plasma technologies for the modification of geometrically complex surfaces of mechanical engineering products aimed at increasing wear resistance, hardness and other technical characteristics of the working surfaces of precision engineering products. A fairly complete approbation of methods, approaches, procedures and decision-making criteria for various technologies allows them to be recommended for universal applicability.