{"title":"FUNDAMENTALS OF SCALING OF OVERALL COOLING EFFECTIVENESS WITH TEMPERATURE RATIO","authors":"James Cartlidge, Thomas Povey","doi":"10.1115/1.4063730","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the relationship between overall cooling effectiveness (or so-called metal effectiveness) and mainstream-to-coolant total temperature ratio (TR), for typical high-pressure nozzle guide vane (HPNGV) cooling systems. The temperature ratio range studied is that between typical experimental conditions (TR ≅ 1.2) and typical engine conditions (TR ≅ 2.0). The purpose is twofold: firstly, to quantify the difference in overall cooling effectiveness between experimental and engine conditions of temperature ratio; and—secondly—to understand the physical bases for the difference, separated in terms of changes in five local surface boundary conditions. We do this using a bespoke conjugate thermal model which includes models of both the internal cooling and the external film cooling layer. Three typical cooling architectures are studied. The results allow comparison and scaling between situations at different conditions of temperature ratio.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"37 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063730","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper we study the relationship between overall cooling effectiveness (or so-called metal effectiveness) and mainstream-to-coolant total temperature ratio (TR), for typical high-pressure nozzle guide vane (HPNGV) cooling systems. The temperature ratio range studied is that between typical experimental conditions (TR ≅ 1.2) and typical engine conditions (TR ≅ 2.0). The purpose is twofold: firstly, to quantify the difference in overall cooling effectiveness between experimental and engine conditions of temperature ratio; and—secondly—to understand the physical bases for the difference, separated in terms of changes in five local surface boundary conditions. We do this using a bespoke conjugate thermal model which includes models of both the internal cooling and the external film cooling layer. Three typical cooling architectures are studied. The results allow comparison and scaling between situations at different conditions of temperature ratio.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.