Yong Yu, Shudong Chen, Rong Du, Da Tong, Hao Xu, Shuai Chen
{"title":"MSEN: A Multi-Scale Evolutionary Network for Modeling the Evolution of Temporal Knowledge Graphs","authors":"Yong Yu, Shudong Chen, Rong Du, Da Tong, Hao Xu, Shuai Chen","doi":"10.3390/fi15100327","DOIUrl":null,"url":null,"abstract":"Temporal knowledge graphs play an increasingly prominent role in scenarios such as social networks, finance, and smart cities. As such, research on temporal knowledge graphs continues to deepen. In particular, research on temporal knowledge graph reasoning holds great significance, as it can provide abundant knowledge for downstream tasks such as question answering and recommendation systems. Current reasoning research focuses primarily on interpolation and extrapolation. Extrapolation research aims to predict the likelihood of events occurring in future timestamps. Historical events are crucial for predicting future events. However, existing models struggle to fully capture the evolutionary characteristics of historical knowledge graphs. This paper proposes a multi-scale evolutionary network (MSEN) model that leverages Hierarchical Transfer aware Graph Neural Network (HT-GNN) in a local memory encoder to aggregate rich structural semantics from each timestamp’s knowledge graph. It also utilizes Time Related Graph Neural Network (TR-GNN) in a global memory encoder to model temporal-semantic dependencies of entities across the global knowledge graph, mining global evolutionary patterns. The model integrates information from both encoders to generate entity embeddings for predicting future events. The proposed MSEN model demonstrates strong performance compared to several baselines on typical benchmark datasets. Results show MSEN achieves the highest prediction accuracy.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"2014 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15100327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal knowledge graphs play an increasingly prominent role in scenarios such as social networks, finance, and smart cities. As such, research on temporal knowledge graphs continues to deepen. In particular, research on temporal knowledge graph reasoning holds great significance, as it can provide abundant knowledge for downstream tasks such as question answering and recommendation systems. Current reasoning research focuses primarily on interpolation and extrapolation. Extrapolation research aims to predict the likelihood of events occurring in future timestamps. Historical events are crucial for predicting future events. However, existing models struggle to fully capture the evolutionary characteristics of historical knowledge graphs. This paper proposes a multi-scale evolutionary network (MSEN) model that leverages Hierarchical Transfer aware Graph Neural Network (HT-GNN) in a local memory encoder to aggregate rich structural semantics from each timestamp’s knowledge graph. It also utilizes Time Related Graph Neural Network (TR-GNN) in a global memory encoder to model temporal-semantic dependencies of entities across the global knowledge graph, mining global evolutionary patterns. The model integrates information from both encoders to generate entity embeddings for predicting future events. The proposed MSEN model demonstrates strong performance compared to several baselines on typical benchmark datasets. Results show MSEN achieves the highest prediction accuracy.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.