Artificial Bear Bile: A Novel Approach to Balancing Medical Requirements and Animal Welfare

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-07-01 DOI:10.1016/j.eng.2023.09.017
{"title":"Artificial Bear Bile: A Novel Approach to Balancing Medical Requirements and Animal Welfare","authors":"","doi":"10.1016/j.eng.2023.09.017","DOIUrl":null,"url":null,"abstract":"<div><p>Bear bile has been a valuable and effective medicinal material in traditional Chinese medicine (TCM) for over 13 centuries. However, the current practice of obtaining it through bear farming is under scrutiny for its adverse impact on bear welfare. Here, we present a new approach for creating artificial bear bile (ABB) as a high-quality and sustainable alternative to natural bear bile. This study addresses the scientific challenges of creating bear bile alternatives through interdisciplinary collaborations across various fields, including resources, chemistry, biology, medicine, pharmacology, and TCM. A comprehensive efficacy assessment system that bridges the gap between TCM and modern medical terminology has been established, allowing for the systematic screening of therapeutic constituents. Through the utilization of chemical synthesis and enzyme engineering technologies, our research has achieved the environmentally friendly, large-scale production of bear bile therapeutic compounds, as well as the optimization and recomposition of ABB formulations. The resulting ABB not only closely resembles natural bear bile in its composition but also offers advantages such as consistent product quality, availability of raw materials, and independence from threatened or wild resources. Comprehensive preclinical efficacy evaluations have demonstrated the equivalence of the therapeutic effects from ABB and those from commercially available drained bear bile (DBB). Furthermore, preclinical toxicological assessment and phase I clinical trials show that the safety of ABB is on par with that of the currently used DBB. This innovative strategy can serve as a new research paradigm for developing alternatives for other endangered TCMs, thereby strengthening the integrity and sustainability of TCM.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809923004587/pdfft?md5=aa4f2dcaa457ae204d66d7fb64ce4abf&pid=1-s2.0-S2095809923004587-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809923004587","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bear bile has been a valuable and effective medicinal material in traditional Chinese medicine (TCM) for over 13 centuries. However, the current practice of obtaining it through bear farming is under scrutiny for its adverse impact on bear welfare. Here, we present a new approach for creating artificial bear bile (ABB) as a high-quality and sustainable alternative to natural bear bile. This study addresses the scientific challenges of creating bear bile alternatives through interdisciplinary collaborations across various fields, including resources, chemistry, biology, medicine, pharmacology, and TCM. A comprehensive efficacy assessment system that bridges the gap between TCM and modern medical terminology has been established, allowing for the systematic screening of therapeutic constituents. Through the utilization of chemical synthesis and enzyme engineering technologies, our research has achieved the environmentally friendly, large-scale production of bear bile therapeutic compounds, as well as the optimization and recomposition of ABB formulations. The resulting ABB not only closely resembles natural bear bile in its composition but also offers advantages such as consistent product quality, availability of raw materials, and independence from threatened or wild resources. Comprehensive preclinical efficacy evaluations have demonstrated the equivalence of the therapeutic effects from ABB and those from commercially available drained bear bile (DBB). Furthermore, preclinical toxicological assessment and phase I clinical trials show that the safety of ABB is on par with that of the currently used DBB. This innovative strategy can serve as a new research paradigm for developing alternatives for other endangered TCMs, thereby strengthening the integrity and sustainability of TCM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工熊胆:一种平衡医疗需求和动物福利的新方法
13个多世纪以来,熊胆汁一直是一种珍贵而有效的中药药材。然而,目前通过养熊来获取熊皮的做法正受到审查,因为它对熊的福利有不利影响。在这里,我们提出了一种新的方法来创造人工熊胆(ABB)作为一种高质量和可持续的天然熊胆替代品。本研究通过资源、化学、生物学、医学、药理学和中医等多个领域的跨学科合作,解决了创造熊胆替代品的科学挑战。建立了一套综合疗效评估体系,弥合了中医与现代医学术语之间的差距,可以系统地筛选治疗成分。通过利用化学合成和酶工程技术,我们的研究实现了熊胆治疗化合物的环保、规模化生产,以及ABB配方的优化和重组。由此产生的ABB不仅在成分上与天然熊胆非常相似,而且具有产品质量稳定、原材料可获得性以及不依赖于受威胁或野生资源等优势。全面的临床前疗效评估表明,ABB的治疗效果与市售的熊胆(DBB)的治疗效果相当。此外,临床前毒理学评估和Ⅰ期临床试验表明,ABB的安全性与目前使用的DBB相当。这一创新策略可作为开发其他濒危中药替代品的新研究范式,从而加强中药的完整性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1