Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-10-01 DOI:10.1016/j.eng.2024.01.022
{"title":"Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends","authors":"","doi":"10.1016/j.eng.2024.01.022","DOIUrl":null,"url":null,"abstract":"<div><div>As the scale of urban rail transit (URT) networks expands, the study of URT resilience is essential for safe and efficient operations. This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research. First, URT resilience is defined by three primary abilities: absorption, resistance, and recovery, and four properties: robustness, vulnerability, rapidity, and redundancy. Then, the metrics and assessment approaches for URT resilience were summarized. The metrics are divided into three categories: topology-based, characteristic-based, and performance-based, and the assessment methods are divided into four categories: topological, simulation, optimization, and data-driven. Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods, such as conventional complex network analysis and operations optimization theory, with new techniques like big data and intelligent computing technology, to accurately assess URT resilience. Finally, five potential trends and directions for future research were identified: analyzing resilience based on multisource data, optimizing train diagram in multiple scenarios, accurate response to passenger demand through new technologies, coupling and optimizing passenger and traffic flows, and optimal line design.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 7-18"},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924001280","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the scale of urban rail transit (URT) networks expands, the study of URT resilience is essential for safe and efficient operations. This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research. First, URT resilience is defined by three primary abilities: absorption, resistance, and recovery, and four properties: robustness, vulnerability, rapidity, and redundancy. Then, the metrics and assessment approaches for URT resilience were summarized. The metrics are divided into three categories: topology-based, characteristic-based, and performance-based, and the assessment methods are divided into four categories: topological, simulation, optimization, and data-driven. Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods, such as conventional complex network analysis and operations optimization theory, with new techniques like big data and intelligent computing technology, to accurately assess URT resilience. Finally, five potential trends and directions for future research were identified: analyzing resilience based on multisource data, optimizing train diagram in multiple scenarios, accurate response to passenger demand through new technologies, coupling and optimizing passenger and traffic flows, and optimal line design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解城市轨道交通的复原力:概念、评论和趋势
随着城市轨道交通(URT)网络规模的扩大,对城市轨道交通复原力的研究对于安全高效的运营至关重要。本文全面回顾了城市轨道交通的抗灾能力,并强调了未来研究的潜在趋势和方向。首先,城市轨道交通的复原力由三种主要能力(吸收、抵抗和恢复)和四种特性(稳健性、脆弱性、快速性和冗余性)定义。然后,总结了 URT 复原力的衡量标准和评估方法。指标分为三类:基于拓扑、基于特征和基于性能;评估方法分为四类:拓扑、模拟、优化和数据驱动。通过对各种指标和评估方法的比较发现,当前城市轨道交通弹性的研究趋势越来越倾向于将传统的复杂网络分析、运筹优化理论等传统方法与大数据、智能计算技术等新技术相结合,以准确评估城市轨道交通的弹性。最后,确定了未来研究的五大潜在趋势和方向:基于多源数据的弹性分析、多场景下的列车图优化、通过新技术准确响应乘客需求、客流与车流的耦合与优化、优化线路设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1