Anru R. Zhang;Ryan P. Bell;Chen An;Runshi Tang;Shana A. Hall;Cliburn Chan;Kareem Al-Khalil;Christina S. Meade
{"title":"Cocaine Use Prediction With Tensor-Based Machine Learning on Multimodal MRI Connectome Data","authors":"Anru R. Zhang;Ryan P. Bell;Chen An;Runshi Tang;Shana A. Hall;Cliburn Chan;Kareem Al-Khalil;Christina S. Meade","doi":"10.1162/neco_a_01623","DOIUrl":null,"url":null,"abstract":"This letter considers the use of machine learning algorithms for predicting cocaine use based on magnetic resonance imaging (MRI) connectomic data. The study used functional MRI (fMRI) and diffusion MRI (dMRI) data collected from 275 individuals, which was then parcellated into 246 regions of interest (ROIs) using the Brainnetome atlas. After data preprocessing, the data sets were transformed into tensor form. We developed a tensor-based unsupervised machine learning algorithm to reduce the size of the data tensor from 275 (individuals) × 2 (fMRI and dMRI) × 246 (ROIs) × 246 (ROIs) to 275 (individuals) × 2 (fMRI and dMRI) × 6 (clusters) × 6 (clusters). This was achieved by applying the high-order Lloyd algorithm to group the ROI data into six clusters. Features were extracted from the reduced tensor and combined with demographic features (age, gender, race, and HIV status). The resulting data set was used to train a Catboost model using subsampling and nested cross-validation techniques, which achieved a prediction accuracy of 0.857 for identifying cocaine users. The model was also compared with other models, and the feature importance of the model was presented. Overall, this study highlights the potential for using tensor-based machine learning algorithms to predict cocaine use based on MRI connectomic data and presents a promising approach for identifying individuals at risk of substance abuse.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 1","pages":"107-127"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535099/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This letter considers the use of machine learning algorithms for predicting cocaine use based on magnetic resonance imaging (MRI) connectomic data. The study used functional MRI (fMRI) and diffusion MRI (dMRI) data collected from 275 individuals, which was then parcellated into 246 regions of interest (ROIs) using the Brainnetome atlas. After data preprocessing, the data sets were transformed into tensor form. We developed a tensor-based unsupervised machine learning algorithm to reduce the size of the data tensor from 275 (individuals) × 2 (fMRI and dMRI) × 246 (ROIs) × 246 (ROIs) to 275 (individuals) × 2 (fMRI and dMRI) × 6 (clusters) × 6 (clusters). This was achieved by applying the high-order Lloyd algorithm to group the ROI data into six clusters. Features were extracted from the reduced tensor and combined with demographic features (age, gender, race, and HIV status). The resulting data set was used to train a Catboost model using subsampling and nested cross-validation techniques, which achieved a prediction accuracy of 0.857 for identifying cocaine users. The model was also compared with other models, and the feature importance of the model was presented. Overall, this study highlights the potential for using tensor-based machine learning algorithms to predict cocaine use based on MRI connectomic data and presents a promising approach for identifying individuals at risk of substance abuse.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.