Knowledge as a Breaking of Ergodicity.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2025-03-18 DOI:10.1162/neco_a_01741
Yang He, Vassiliy Lubchenko
{"title":"Knowledge as a Breaking of Ergodicity.","authors":"Yang He, Vassiliy Lubchenko","doi":"10.1162/neco_a_01741","DOIUrl":null,"url":null,"abstract":"<p><p>We construct a thermodynamic potential that can guide training of a generative model defined on a set of binary degrees of freedom. We argue that upon reduction in description, so as to make the generative model computationally manageable, the potential develops multiple minima. This is mirrored by the emergence of multiple minima in the free energy proper of the generative model itself. The variety of training samples that employ N binary degrees of freedom is ordinarily much lower than the size 2N of the full phase space. The nonrepresented configurations, we argue, should be thought of as comprising a high-temperature phase separated by an extensive energy gap from the configurations composing the training set. Thus, training amounts to sampling a free energy surface in the form of a library of distinct bound states, each of which breaks ergodicity. The ergodicity breaking prevents escape into the near continuum of states comprising the high-temperature phase; thus, it is necessary for proper functionality. It may, however, have the side effect of limiting access to patterns that were underrepresented in the training set. At the same time, the ergodicity breaking within the library complicates both learning and retrieval. As a remedy, one may concurrently employ multiple generative models-up to one model per free energy minimum.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"742-792"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01741","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a thermodynamic potential that can guide training of a generative model defined on a set of binary degrees of freedom. We argue that upon reduction in description, so as to make the generative model computationally manageable, the potential develops multiple minima. This is mirrored by the emergence of multiple minima in the free energy proper of the generative model itself. The variety of training samples that employ N binary degrees of freedom is ordinarily much lower than the size 2N of the full phase space. The nonrepresented configurations, we argue, should be thought of as comprising a high-temperature phase separated by an extensive energy gap from the configurations composing the training set. Thus, training amounts to sampling a free energy surface in the form of a library of distinct bound states, each of which breaks ergodicity. The ergodicity breaking prevents escape into the near continuum of states comprising the high-temperature phase; thus, it is necessary for proper functionality. It may, however, have the side effect of limiting access to patterns that were underrepresented in the training set. At the same time, the ergodicity breaking within the library complicates both learning and retrieval. As a remedy, one may concurrently employ multiple generative models-up to one model per free energy minimum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Active Inference and Intentional Behavior. Context-Sensitive Processing in a Model Neocortical Pyramidal Cell With Two Sites of Input Integration. Enhanced EEG Forecasting: A Probabilistic Deep Learning Approach. Knowledge as a Breaking of Ergodicity. Learning in Wilson-Cowan Model for Metapopulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1