{"title":"Copula-based conditional tail indices","authors":"Vincenzo Coia , Harry Joe , Natalia Nolde","doi":"10.1016/j.jmva.2023.105268","DOIUrl":null,"url":null,"abstract":"<div><p><span>Consider a multivariate distribution of </span><span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>X</mi></math></span><span> is a vector of predictor variables and </span><span><math><mi>Y</mi></math></span><span> is a response variable. Results are obtained for comparing the conditional and marginal tail indices, </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span>, based on conditional distributions <span><math><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>|</mo><mi>x</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and marginal distribution <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>Y</mi></mrow></msub></math></span><span>, respectively. For a multivariate distribution based on a copula, the conditional tail index can be decomposed into a product of copula-based conditional tail indices and the marginal tail index. In some applications, one may want </span><span><math><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>Y</mi><mo>|</mo><mi>X</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> to be non-constant, and some new copula families are derived to facilitate this.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"201 ","pages":"Article 105268"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a multivariate distribution of , where is a vector of predictor variables and is a response variable. Results are obtained for comparing the conditional and marginal tail indices, and , based on conditional distributions and marginal distribution , respectively. For a multivariate distribution based on a copula, the conditional tail index can be decomposed into a product of copula-based conditional tail indices and the marginal tail index. In some applications, one may want to be non-constant, and some new copula families are derived to facilitate this.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.