High-dimensional factor copula models with estimation of latent variables

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-25 DOI:10.1016/j.jmva.2023.105263
Xinyao Fan, Harry Joe
{"title":"High-dimensional factor copula models with estimation of latent variables","authors":"Xinyao Fan,&nbsp;Harry Joe","doi":"10.1016/j.jmva.2023.105263","DOIUrl":null,"url":null,"abstract":"<div><p><span>Factor models are a parsimonious way to explain the dependence of variables using several latent variables. In Gaussian 1-factor and structural factor models (such as bi-factor and oblique factor) and their factor </span>copula<span><span> counterparts, factor scores or proxies are defined as conditional expectations of latent variables given the observed variables. With mild assumptions, the proxies are consistent for corresponding latent variables as the sample size and the number of observed variables linked to each latent variable go to infinity. When the </span>bivariate<span> copulas linking observed variables to latent variables are not assumed in advance, sequential procedures are used for latent variables estimation, copula family selection and parameter estimation. The use of proxy variables for factor copulas means that approximate log-likelihoods can be used to estimate copula parameters with less computational effort for numerical integration.</span></span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Factor models are a parsimonious way to explain the dependence of variables using several latent variables. In Gaussian 1-factor and structural factor models (such as bi-factor and oblique factor) and their factor copula counterparts, factor scores or proxies are defined as conditional expectations of latent variables given the observed variables. With mild assumptions, the proxies are consistent for corresponding latent variables as the sample size and the number of observed variables linked to each latent variable go to infinity. When the bivariate copulas linking observed variables to latent variables are not assumed in advance, sequential procedures are used for latent variables estimation, copula family selection and parameter estimation. The use of proxy variables for factor copulas means that approximate log-likelihoods can be used to estimate copula parameters with less computational effort for numerical integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有潜在变量估计的高维因子联结模型
因子模型是使用几个潜在变量来解释变量相关性的一种简洁的方法。在高斯单因素和结构因素模型(如双因素和倾斜因素)及其因子联结模型中,因子得分或代理被定义为给定观察变量的潜在变量的条件期望。在温和的假设下,随着样本量和与每个潜在变量相关的观察变量的数量趋于无穷,对应的潜在变量的代理是一致的。当观测变量与潜在变量之间的二元联结关系没有预先假设时,隐变量估计、联结关系族选择和参数估计采用顺序过程。因子联结的代理变量的使用意味着可以使用近似对数似然来估计联结参数,从而减少数值积分的计算工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data On the exact region determined by Spearman’s ρ and Blest’s measure of rank correlation ν for bivariate extreme-value copulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1