Copper micromesh-based lightweight transparent conductor with short response time for wearable heaters

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2021-10-25 DOI:10.1186/s40486-021-00132-5
Han-Jung Kim, Yoonkap Kim
{"title":"Copper micromesh-based lightweight transparent conductor with short response time for wearable heaters","authors":"Han-Jung Kim,&nbsp;Yoonkap Kim","doi":"10.1186/s40486-021-00132-5","DOIUrl":null,"url":null,"abstract":"<div><p>Thickness-controlled transparent conducting films (TCFs) were fabricated by transfer printing a 100 nm thick Cu micromesh structure onto poly(vinyl alcohol) (PVA) substrates of different thicknesses (~ 50, ~ 80, and ~ 120 μm) to develop a lightweight transparent wearable heater with short response time. The Cu mesh-based TCF fabricated on a ~ 50 µm thick PVA substrate exhibited excellent optical and electrical properties with a light transmittance of 86.7% at 550 nm, sheet resistance of ~ 10.8 Ω/sq, and figure-of-merit of approximately 236, which are comparable to commercial indium tin oxide film-based transparent conductors. The remarkable flexibility of the Cu mesh-based TCF was demonstrated through cyclic mechanical bending tests. In addition, the Cu mesh-based TCF with ~ 50 μm thick PVA substrate demonstrated a fast Joule heating performance with a thermal response time of ~ 18.0 s and a ramping rate of ~ 3.0 ℃/s under a driving voltage of 2.5 V. Lastly, the reliable response and recovery characteristics of the Cu mesh/PVA film-based transparent heater were confirmed through the cyclic power test. We believe that the results of this study is useful in the development of flexible transparent heaters, including lightweight deicing/defogging films, wearable sensors/actuators, and medical thermotherapy pads.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00132-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-021-00132-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thickness-controlled transparent conducting films (TCFs) were fabricated by transfer printing a 100 nm thick Cu micromesh structure onto poly(vinyl alcohol) (PVA) substrates of different thicknesses (~ 50, ~ 80, and ~ 120 μm) to develop a lightweight transparent wearable heater with short response time. The Cu mesh-based TCF fabricated on a ~ 50 µm thick PVA substrate exhibited excellent optical and electrical properties with a light transmittance of 86.7% at 550 nm, sheet resistance of ~ 10.8 Ω/sq, and figure-of-merit of approximately 236, which are comparable to commercial indium tin oxide film-based transparent conductors. The remarkable flexibility of the Cu mesh-based TCF was demonstrated through cyclic mechanical bending tests. In addition, the Cu mesh-based TCF with ~ 50 μm thick PVA substrate demonstrated a fast Joule heating performance with a thermal response time of ~ 18.0 s and a ramping rate of ~ 3.0 ℃/s under a driving voltage of 2.5 V. Lastly, the reliable response and recovery characteristics of the Cu mesh/PVA film-based transparent heater were confirmed through the cyclic power test. We believe that the results of this study is useful in the development of flexible transparent heaters, including lightweight deicing/defogging films, wearable sensors/actuators, and medical thermotherapy pads.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可穿戴式加热器的基于铜微网的轻质透明导体,响应时间短
通过在不同厚度(~ 50、~ 80和~ 120 μm)的聚乙烯醇(PVA)衬底上转移打印厚度为100 nm的Cu微网结构,制备了厚度可控的透明导电薄膜(tcf),开发了响应时间短的轻质透明可穿戴加热器。在~ 50µm厚的PVA衬底上制备的Cu网基TCF具有优异的光学和电学性能,在550 nm处透光率为86.7%,片电阻为~ 10.8 Ω/sq,品质因数约为236,与商业氧化铟锡薄膜透明导体相当。通过循环力学弯曲试验证明了铜网格基TCF具有显著的柔韧性。此外,在2.5 V驱动电压下,采用~ 50 μm厚PVA衬底的Cu网格TCF具有快速焦耳加热性能,热响应时间为~ 18.0 s,升温速率为~ 3.0℃/s。最后,通过循环功率试验,验证了Cu网/PVA薄膜透明加热器的可靠响应和恢复特性。我们相信这项研究的结果对柔性透明加热器的开发是有用的,包括轻质除冰/除雾薄膜、可穿戴传感器/致动器和医用热疗垫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
Influence of implantation of O2+ ions on the composition and electronic structure of the W(111) surface ZnO-adipic acid composites as phase change material for latent heat thermal energy storage systems Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system Investigating non fluorescence nanoparticle transport in Matrigel-filled microfluidic devices using synchrotron X-ray scattering Flexible sensing probe for the simultaneous monitoring of neurotransmitters imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1