Railway ground vibration and mitigation measures: benchmarking of best practices

IF 4.4 1区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY Railway Engineering Science Pub Date : 2022-01-08 DOI:10.1007/s40534-021-00264-9
Ouakka, Slimane, Verlinden, Olivier, Kouroussis, Georges
{"title":"Railway ground vibration and mitigation measures: benchmarking of best practices","authors":"Ouakka, Slimane, Verlinden, Olivier, Kouroussis, Georges","doi":"10.1007/s40534-021-00264-9","DOIUrl":null,"url":null,"abstract":"<p>Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their residents. Among the different sources, the one coming from the rail transit system will play a central concern in the following years due to its sustainability. Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry. This paper aims to describe and compare the different mitigation systems existing and reported in literature through a comprehensive state of the art analysis providing the performance of each measure. First, an introduction to the ground-borne vibration and noise generated from the wheel-rail contact and its propagation through the transmission path is presented. Then, the impact and the different ways of evaluating and assessing these effects are presented, and the insertion loss indicator is introduced. Next, the different mitigation measures at different levels (vehicle, track, transmission path and receiver) are discussed by describing their possible application and their efficiency in terms of insertion loss. Finally, a summary with inputs of how it is possible to address the future of mitigation systems is reported.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-021-00264-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 28

Abstract

Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their residents. Among the different sources, the one coming from the rail transit system will play a central concern in the following years due to its sustainability. Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry. This paper aims to describe and compare the different mitigation systems existing and reported in literature through a comprehensive state of the art analysis providing the performance of each measure. First, an introduction to the ground-borne vibration and noise generated from the wheel-rail contact and its propagation through the transmission path is presented. Then, the impact and the different ways of evaluating and assessing these effects are presented, and the insertion loss indicator is introduced. Next, the different mitigation measures at different levels (vehicle, track, transmission path and receiver) are discussed by describing their possible application and their efficiency in terms of insertion loss. Finally, a summary with inputs of how it is possible to address the future of mitigation systems is reported.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁路地面振动和减缓措施:最佳做法的基准
振动和噪声方面对城市地区及其居民的寿命和舒适度起着相关的作用。在不同的能源来源中,由于轨道交通系统的可持续性,它将在接下来的几年里发挥核心作用。地面振动和噪音评估以及减轻它们的技术成为环境影响和铁路工业全球扩张计划的关键要素。本文旨在通过提供每种措施的性能的综合最新分析,描述和比较现有和文献中报道的不同缓解系统。首先,介绍了轮轨接触产生的地面振动和噪声及其在传输路径中的传播。然后,介绍了这些影响的影响以及评估这些影响的不同方法,并介绍了插入损失指标。接下来,讨论了不同级别(车辆、轨道、传输路径和接收器)的不同缓解措施,描述了它们可能的应用以及它们在插入损失方面的效率。最后,报告了一份摘要,其中包括如何可能应对未来的缓解系统的投入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Railway Engineering Science
Railway Engineering Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
10.80
自引率
7.90%
发文量
1061
审稿时长
15 weeks
期刊介绍: Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.
期刊最新文献
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests Innovative and cost-effective rail track construction using recycled rubber Drive-by damage detection methodology for high-speed railway bridges using sparse autoencoders Carbody sway behaviour of railway vehicles due to track irregularity from rail alternate side wear Advancing high-speed train gearbox durability: enhanced bearing load and contact stress through transition from helical to herringbone gears
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1