Ouakka, Slimane, Verlinden, Olivier, Kouroussis, Georges
{"title":"Railway ground vibration and mitigation measures: benchmarking of best practices","authors":"Ouakka, Slimane, Verlinden, Olivier, Kouroussis, Georges","doi":"10.1007/s40534-021-00264-9","DOIUrl":null,"url":null,"abstract":"<p>Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their residents. Among the different sources, the one coming from the rail transit system will play a central concern in the following years due to its sustainability. Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry. This paper aims to describe and compare the different mitigation systems existing and reported in literature through a comprehensive state of the art analysis providing the performance of each measure. First, an introduction to the ground-borne vibration and noise generated from the wheel-rail contact and its propagation through the transmission path is presented. Then, the impact and the different ways of evaluating and assessing these effects are presented, and the insertion loss indicator is introduced. Next, the different mitigation measures at different levels (vehicle, track, transmission path and receiver) are discussed by describing their possible application and their efficiency in terms of insertion loss. Finally, a summary with inputs of how it is possible to address the future of mitigation systems is reported.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-021-00264-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 28
Abstract
Vibration and noise aspects play a relevant role in the lifetime and comfort of urban areas and their residents. Among the different sources, the one coming from the rail transit system will play a central concern in the following years due to its sustainability. Ground-borne vibration and noise assessment as well as techniques to mitigate them become key elements of the environmental impact and the global enlargement planned for the railway industry. This paper aims to describe and compare the different mitigation systems existing and reported in literature through a comprehensive state of the art analysis providing the performance of each measure. First, an introduction to the ground-borne vibration and noise generated from the wheel-rail contact and its propagation through the transmission path is presented. Then, the impact and the different ways of evaluating and assessing these effects are presented, and the insertion loss indicator is introduced. Next, the different mitigation measures at different levels (vehicle, track, transmission path and receiver) are discussed by describing their possible application and their efficiency in terms of insertion loss. Finally, a summary with inputs of how it is possible to address the future of mitigation systems is reported.
期刊介绍:
Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.