Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests

IF 4.4 1区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY Railway Engineering Science Pub Date : 2024-09-14 DOI:10.1007/s40534-024-00356-2
Morteza Esmaeili, Hamidreza Heydari, Maziar Mokhtari, Sara Darvishi
{"title":"Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests","authors":"Morteza Esmaeili, Hamidreza Heydari, Maziar Mokhtari, Sara Darvishi","doi":"10.1007/s40534-024-00356-2","DOIUrl":null,"url":null,"abstract":"<p>Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts. Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration. One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires. Utilizing these waste materials in the ballasted railway track will contribute to sustainable development, an eco-friendly system, and green infrastructure. So in a state-of-the-art insightful, the ballast aggregates, including a mixture of steel slag and stone aggregates, are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps. This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap. To achieve this goal, a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates. The concluded results indicate that the optimal mixing ratio is attained by a combination of 75% slag and 25% stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm. In this case, the shear strength‌, internal friction angle, vertical displacement, and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of + 28%, + 9%, − 28%, and − 15%, respectively.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-024-00356-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts. Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration. One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires. Utilizing these waste materials in the ballasted railway track will contribute to sustainable development, an eco-friendly system, and green infrastructure. So in a state-of-the-art insightful, the ballast aggregates, including a mixture of steel slag and stone aggregates, are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps. This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap. To achieve this goal, a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates. The concluded results indicate that the optimal mixing ratio is attained by a combination of 75% slag and 25% stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm. In this case, the shear strength‌, internal friction angle, vertical displacement, and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of + 28%, + 9%, − 28%, and − 15%, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大规模直接剪切试验分析矿渣石碴加固材料与轮胎土工碎屑混合后的剪切强度特性
利用具有更耐用、更稳定特性的道碴层,有助于避免因维护工作量减少而产生大量费用。用不同类型的加固材料加固道碴层,或用适当的颗粒材料替代石料集料,都有可能减少道碴的老化,从而帮助实现这一目标。要消除这些挑战,最精致、最有效的解决方案之一就是使用钢渣集料和废旧轮胎等废弃材料。在有砟轨道中利用这些废料将有助于可持续发展、生态友好型系统和绿色基础设施。因此,在一种先进的见解中,包括钢渣和石料混合物在内的无砟轨道骨料被一种由废旧轮胎条制成的新型土工格栅加固,这种土工格栅被称为 "土工包"。这项实验室研究试图解释用轮胎土工碎屑加固的钢渣-石碴混合料的剪切强度行为。为实现这一目标,对轮胎土工碎屑加固的道碴进行了一系列大规模直接剪切试验,其中包括矿渣和石料的各种组合。试验结果表明,75% 的矿渣和 25% 的石集料的组合达到了最佳混合比,轮胎土工碎屑对其进行了加固,铺设厚度为 120 毫米。在这种情况下,用土工碎屑加固的石渣道碴的剪切强度、内摩擦角、垂直位移和膨胀角的平均变化分别为+ 28%、+ 9%、- 28%和- 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Railway Engineering Science
Railway Engineering Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
10.80
自引率
7.90%
发文量
1061
审稿时长
15 weeks
期刊介绍: Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.
期刊最新文献
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests Innovative and cost-effective rail track construction using recycled rubber Drive-by damage detection methodology for high-speed railway bridges using sparse autoencoders Carbody sway behaviour of railway vehicles due to track irregularity from rail alternate side wear Advancing high-speed train gearbox durability: enhanced bearing load and contact stress through transition from helical to herringbone gears
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1