{"title":"Innovative and cost-effective rail track construction using recycled rubber","authors":"Buddhima Indraratna, Yujie Qi, Trung Ngo, Rakesh Malisetty, Chathuri Kulappu Arachchige","doi":"10.1007/s40534-024-00352-6","DOIUrl":null,"url":null,"abstract":"<p>Facing the high demand for faster and heavier freight trains in Australia, researchers and practitioners are endeavouring to develop more innovative and resilient ballasted tracks. In recent years, many studies have been conducted by the researchers from Transport Research Centre at the University of Technology Sydney (TRC-UTS) to examine the feasibility of incorporating recycled tyre/rubber into rail tracks. This paper reviews three innovative applications using recycled rubber products such as (1) a synthetic energy-absorbing layer for railway subballast using a composite of rubber crumbs and mining by-products, (2) using rubber intermixed ballast stratum to replace conventional ballast, and (3) installing recycled rubber mat to mitigate ballast degradation under the impact loading. Comprehensive laboratory and field tests as well as numerical modelling have been conducted to examine the performance of rail tracks incorporating these innovative inclusions. The laboratory and field test results and numerical modelling reveal that incorporating these rubber products could increase the energy-absorbing capacity of the track, and mitigate the ballast breakage and settlement significantly, hence increasing the track stability. The research outcomes will facilitate a better understanding of the performance of ballast tracks incorporating these resilient waste tyre materials while promoting more economical and environmentally sustainable tracks for greater passenger comfort and increased safety.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-024-00352-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Facing the high demand for faster and heavier freight trains in Australia, researchers and practitioners are endeavouring to develop more innovative and resilient ballasted tracks. In recent years, many studies have been conducted by the researchers from Transport Research Centre at the University of Technology Sydney (TRC-UTS) to examine the feasibility of incorporating recycled tyre/rubber into rail tracks. This paper reviews three innovative applications using recycled rubber products such as (1) a synthetic energy-absorbing layer for railway subballast using a composite of rubber crumbs and mining by-products, (2) using rubber intermixed ballast stratum to replace conventional ballast, and (3) installing recycled rubber mat to mitigate ballast degradation under the impact loading. Comprehensive laboratory and field tests as well as numerical modelling have been conducted to examine the performance of rail tracks incorporating these innovative inclusions. The laboratory and field test results and numerical modelling reveal that incorporating these rubber products could increase the energy-absorbing capacity of the track, and mitigate the ballast breakage and settlement significantly, hence increasing the track stability. The research outcomes will facilitate a better understanding of the performance of ballast tracks incorporating these resilient waste tyre materials while promoting more economical and environmentally sustainable tracks for greater passenger comfort and increased safety.
期刊介绍:
Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.