Thermal and mechanical analysis of low-temperature and low-pressure silver-based sintered thermal joints

IF 1.7 4区 材料科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Soldering & Surface Mount Technology Pub Date : 2022-04-28 DOI:10.1108/ssmt-06-2021-0042
Krzysztof Jakub Stojek, Jan Felba, Damian Nowak, Karol Malecha, Szymon Kaczmarek, Patryk Tomasz Tomasz Andrzejak
{"title":"Thermal and mechanical analysis of low-temperature and low-pressure silver-based sintered thermal joints","authors":"Krzysztof Jakub Stojek, Jan Felba, Damian Nowak, Karol Malecha, Szymon Kaczmarek, Patryk Tomasz Tomasz Andrzejak","doi":"10.1108/ssmt-06-2021-0042","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is important to achieve information about how materials and process parameters influence them.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Thermal investigation of the thermal joints analysis method was focused on determination of thermal resistance, where temperature measurements were performed using infrared camera. They were performed in two modes: steady-state analysis and dynamic analysis. Mechanical analysis based on measurements of mechanical shear force. Additional characterizations based on X-ray image analysis (image thresholding), optical microscope of polished cross-section and scanning electron microscope image analysis were proposed.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Sample surface modification affects thermal resistance. Silver metallization exhibits the lowest thermal resistance and the highest mechanical strength compared to the pure Si surface. The type of dynamic analysis affects the results of the thermal resistance.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Investigation of the layer quality influence on mechanical and thermal performance provided information about different joint types.</p><!--/ Abstract__block -->","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-06-2021-0042","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is important to achieve information about how materials and process parameters influence them.

Design/methodology/approach

Thermal investigation of the thermal joints analysis method was focused on determination of thermal resistance, where temperature measurements were performed using infrared camera. They were performed in two modes: steady-state analysis and dynamic analysis. Mechanical analysis based on measurements of mechanical shear force. Additional characterizations based on X-ray image analysis (image thresholding), optical microscope of polished cross-section and scanning electron microscope image analysis were proposed.

Findings

Sample surface modification affects thermal resistance. Silver metallization exhibits the lowest thermal resistance and the highest mechanical strength compared to the pure Si surface. The type of dynamic analysis affects the results of the thermal resistance.

Originality/value

Investigation of the layer quality influence on mechanical and thermal performance provided information about different joint types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温低压银基烧结热接头的热力学分析
目的对银基烧结热接头进行热力学表征。层的质量影响热性能和机械性能,获得有关材料和工艺参数如何影响它们的信息非常重要。设计/方法学/方法热接头分析方法的热调查主要集中在热阻的确定上,其中使用红外摄像机进行温度测量。它们以两种模式进行:稳态分析和动态分析。基于机械剪切力测量的力学分析。提出了基于x射线图像分析(图像阈值化)、抛光截面光学显微镜和扫描电镜图像分析的附加表征方法。结果:样品表面改性影响热阻。与纯硅表面相比,银金属化表现出最低的热阻和最高的机械强度。动态分析的类型影响热阻的结果。独创性/价值层质量对力学和热工性能影响的研究提供了不同接头类型的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soldering & Surface Mount Technology
Soldering & Surface Mount Technology 工程技术-材料科学:综合
CiteScore
4.10
自引率
15.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International. The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.
期刊最新文献
Formation and growth mechanism of thin Cu6Sn5 films in Sn/Cu and Sn-0.1AlN/Cu structures using laser heating Influence of annealing temperature on 3D surface stereometric analysis in C-Ni films Effect of different beam distances in laser soldering process: a numerical and experimental study Interfacial IMC growth behavior of Sn-3Ag-3Sb-xIn solder on Cu substrate Effects of Ni addition on wettability and interfacial microstructure of Sn-0.7Cu-xNi solder alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1