A Prototype of a Background Solar Wind Forecasting Service Based on MHD Modeling and WSA Boundary Conditions

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Cosmic Research Pub Date : 2023-11-24 DOI:10.1134/s0010952523700508
S. Arutyunyan, A. Kodukov, M. Subbotin, D. Pavlov
{"title":"A Prototype of a Background Solar Wind Forecasting Service Based on MHD Modeling and WSA Boundary Conditions","authors":"S. Arutyunyan, A. Kodukov, M. Subbotin, D. Pavlov","doi":"10.1134/s0010952523700508","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A prototype service for MHD modeling of the calm solar wind and forecasting the speed and density of solar wind particles in interplanetary space, similar to the NOAA and ESA services, has been created. The service consists of an MHD simulator, a module for processing simulation results, and a web interface. The simulator is based on the implementation of the TVDLF method in the PLUTO package. The boundary conditions of the model (density, radial velocity, magnetic field, temperature) at a distance of 0.1 AU from the origin are obtained regularly from the corresponding NOAA service, in which they are calculated according to the WSA model based on the magnetograms of the GONG network. Two modes of boundary conditions are available: constant and daily. The simulations were carried out on a uniform grid in the range of 0.1–1.7 AU by distance (512 elements), –60°...+60° by latitude (60 elements), 0°–360° by longitude (180 elements). The calculated particle velocity and density maps are compared with the NOAA SWPC and NASA CCMC calculations under the same boundary conditions. A retrospective comparison of the resulting forecasts with data from direct measurements (OMNI) was carried out.</p>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":"50 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952523700508","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A prototype service for MHD modeling of the calm solar wind and forecasting the speed and density of solar wind particles in interplanetary space, similar to the NOAA and ESA services, has been created. The service consists of an MHD simulator, a module for processing simulation results, and a web interface. The simulator is based on the implementation of the TVDLF method in the PLUTO package. The boundary conditions of the model (density, radial velocity, magnetic field, temperature) at a distance of 0.1 AU from the origin are obtained regularly from the corresponding NOAA service, in which they are calculated according to the WSA model based on the magnetograms of the GONG network. Two modes of boundary conditions are available: constant and daily. The simulations were carried out on a uniform grid in the range of 0.1–1.7 AU by distance (512 elements), –60°...+60° by latitude (60 elements), 0°–360° by longitude (180 elements). The calculated particle velocity and density maps are compared with the NOAA SWPC and NASA CCMC calculations under the same boundary conditions. A retrospective comparison of the resulting forecasts with data from direct measurements (OMNI) was carried out.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MHD模型和WSA边界条件的背景太阳风预报服务原型
建立了类似于NOAA和ESA服务的MHD模拟平静太阳风和预测行星际空间太阳风粒子速度和密度的原型服务。该服务由一个MHD模拟器、一个处理模拟结果的模块和一个web界面组成。模拟器基于PLUTO包中的TVDLF方法的实现。模型在离原点0.1 AU处的边界条件(密度、径向速度、磁场、温度)是由NOAA相应服务定期获得的,其中这些边界条件是根据基于GONG网磁图的WSA模型计算得到的。边界条件有两种模式:不变模式和日模式。模拟在距离为0.1-1.7 AU(512个单元),-60°…纬度+60°(60个元素),经度0°-360°(180个元素)。在相同边界条件下,将计算得到的粒子速度和密度图与NOAA SWPC和NASA CCMC计算结果进行了比较。对结果预报与直接测量(OMNI)数据进行了回顾性比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cosmic Research
Cosmic Research 地学天文-工程:宇航
CiteScore
1.10
自引率
33.30%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.
期刊最新文献
ELVES Measurements in the “UV Atmosphere” (Mini-EUSO) Experiment Onboard the ISS and Their Reconstruction On Consistent Dynamics of the Magnetic Field and Relativistic Electron Fluxes in the Geostationary Orbit Region Solar Activity in the Last 20 Years and a Forecast of the 25th Solar Cycle Modeling Arrival Time of Coronal Mass Ejections to Near-Earth Orbit Using Coronal Dimming Parameters Geomagnetic Pulsations in the 1–4 mHz Frequency Range (Pc5/Pi3) in the Magnetotail. Internal and Extramagnetospheric Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1