Design and preparation of a sintered Nd-Y-Fe-B magnet with high magnetic properties via multi-main-phase process and subsequent grain boundary diffusion
Fugang Chen , Suxin Lu , Jie Wang , Yong Zhao , Wenqiang Zhao , Zhi Xu
{"title":"Design and preparation of a sintered Nd-Y-Fe-B magnet with high magnetic properties via multi-main-phase process and subsequent grain boundary diffusion","authors":"Fugang Chen , Suxin Lu , Jie Wang , Yong Zhao , Wenqiang Zhao , Zhi Xu","doi":"10.1016/j.jre.2023.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process. Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity. Grain boundary diffusion process (GBDP) was conducted to further enhance the coercivity of the Nd-Y-Fe-B magnet. The coercivity increases significantly from 884 to 1741 kA/m after GBDP with Pr<sub>60</sub>Tb<sub>10</sub>Cu<sub>30</sub> alloy. The mechanism of the coercivity enhancement is discussed based on the microstructure analysis. Micromagnetic simulation reveals that when the diffused Tb-rich shell thickness is lower than 12 nm the <em>c</em>-plane shell (perpendicular to the <em>c</em>-axis) is much more effective in enhancing the coercivity than the side plane shell (parallel to the <em>c</em>-axis). But when the Tb-rich shell thickness is above 12 nm the side plane shell contributes more to the coercivity enhancement. The results in this work can help to design and manufacture Nd-Fe-B magnets with low cost and high magnetic properties.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"43 2","pages":"Pages 304-311"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123003277","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A sintered Nd-Y-Fe-B magnet was designed and manufactured by the multi-main-phase process. Unevenly distributed Y in the magnet decreases the adverse magnetic weakening effect of Y on the coercivity. Grain boundary diffusion process (GBDP) was conducted to further enhance the coercivity of the Nd-Y-Fe-B magnet. The coercivity increases significantly from 884 to 1741 kA/m after GBDP with Pr60Tb10Cu30 alloy. The mechanism of the coercivity enhancement is discussed based on the microstructure analysis. Micromagnetic simulation reveals that when the diffused Tb-rich shell thickness is lower than 12 nm the c-plane shell (perpendicular to the c-axis) is much more effective in enhancing the coercivity than the side plane shell (parallel to the c-axis). But when the Tb-rich shell thickness is above 12 nm the side plane shell contributes more to the coercivity enhancement. The results in this work can help to design and manufacture Nd-Fe-B magnets with low cost and high magnetic properties.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.