Experimental Investigation of Critical Heat Flux of Nucleate Pool Boiling of Water and Nanofluid on Platinum Wire Under Hypergravity and Earth Gravity

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2023-12-10 DOI:10.1007/s12217-023-10086-5
Yafeng Chen, Xiaohuan Li, Xiande Fang, Zhiqiang He, Yuxiang Fang
{"title":"Experimental Investigation of Critical Heat Flux of Nucleate Pool Boiling of Water and Nanofluid on Platinum Wire Under Hypergravity and Earth Gravity","authors":"Yafeng Chen,&nbsp;Xiaohuan Li,&nbsp;Xiande Fang,&nbsp;Zhiqiang He,&nbsp;Yuxiang Fang","doi":"10.1007/s12217-023-10086-5","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental investigation of the critical heat flux (CHF) of saturated nucleate pool boiling of pure water and water-based Al<sub>2</sub>O<sub>3</sub> nanofluids on the platinum wire with a diameter of 50 μm was conducted under earth gravity and hypergravity. The gravity level ranges from 1 to 3 g, the saturation pressures range from 0.1 to 0.6 MPa, and the Al<sub>2</sub>O<sub>3</sub> concentration in the nanofluids ranges from 0.001wt% to 0.015wt%. The experimental results show that both pressure and gravity are vital factors enhancing the CHF, with the effect of pressure more pronounced. For nanofluids with concentration C &gt; 0.005wt %, CHF initially increased with the increase in gravity. When the gravity is greater than 2 g, CHF does not increase further with the increase in gravity. Increasing nanoparticle concentration significantly enhances the CHF for low nanoparticle concentrations less than 0.005 wt%, and the CHFs change little for further increasing the concentration. Nanofluid has a stronger enhancement to the pool boiling CHF than the combination of the heating surface coated with the same kind of nanoparticles and the base fluid. With the increase of particles concentration, Surface modification gradually becomes dominant mechanism for CHF enhancement.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10086-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental investigation of the critical heat flux (CHF) of saturated nucleate pool boiling of pure water and water-based Al2O3 nanofluids on the platinum wire with a diameter of 50 μm was conducted under earth gravity and hypergravity. The gravity level ranges from 1 to 3 g, the saturation pressures range from 0.1 to 0.6 MPa, and the Al2O3 concentration in the nanofluids ranges from 0.001wt% to 0.015wt%. The experimental results show that both pressure and gravity are vital factors enhancing the CHF, with the effect of pressure more pronounced. For nanofluids with concentration C > 0.005wt %, CHF initially increased with the increase in gravity. When the gravity is greater than 2 g, CHF does not increase further with the increase in gravity. Increasing nanoparticle concentration significantly enhances the CHF for low nanoparticle concentrations less than 0.005 wt%, and the CHFs change little for further increasing the concentration. Nanofluid has a stronger enhancement to the pool boiling CHF than the combination of the heating surface coated with the same kind of nanoparticles and the base fluid. With the increase of particles concentration, Surface modification gradually becomes dominant mechanism for CHF enhancement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超重力和地球重力条件下铂丝上水和纳米流体核团沸腾临界热通量的实验研究
在地球重力和超重力条件下,对直径为 50 μm 的铂丝上的纯水和水基 Al2O3 纳米流体的饱和核池沸腾临界热通量(CHF)进行了实验研究。重力水平为 1 至 3 g,饱和压力为 0.1 至 0.6 MPa,纳米流体中的 Al2O3 浓度为 0.001wt% 至 0.015wt%。实验结果表明,压力和重力都是增强 CHF 的重要因素,其中压力的影响更为明显。对于浓度为 C > 0.005wt % 的纳米流体,CHF 最初随着重力的增加而增加。当重力大于 2 g 时,CHF 不再随重力增加而增加。在纳米粒子浓度小于 0.005 wt% 的低浓度条件下,增加纳米粒子浓度可显著提高 CHF,进一步增加浓度时 CHF 变化不大。纳米流体对池沸CHF的增强作用要强于涂有同类纳米粒子的加热表面与基液的组合。随着颗粒浓度的增加,表面改性逐渐成为增强 CHF 的主要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Correlation Between Invariable Blood Proteins and Heart Rate Variability in Long-Duration Space Flights Numerical Investigation on Mechanism Analysis of Bubble Pinch-off Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions Study on the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1