{"title":"Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation","authors":"Naoto Yamashita","doi":"10.1007/s11336-023-09942-5","DOIUrl":null,"url":null,"abstract":"<p>Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09942-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.