Ordinal Outcome State-Space Models for Intensive Longitudinal Data.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-12-01 Epub Date: 2024-06-11 DOI:10.1007/s11336-024-09984-3
Teague R Henry, Lindley R Slipetz, Ami Falk, Jiaxing Qiu, Meng Chen
{"title":"Ordinal Outcome State-Space Models for Intensive Longitudinal Data.","authors":"Teague R Henry, Lindley R Slipetz, Ami Falk, Jiaxing Qiu, Meng Chen","doi":"10.1007/s11336-024-09984-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with technological advancements that make it simple to deploy study designs such as daily diary and ecological momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day), over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral processes. One powerful framework for analyzing IL data is state-space modeling, where observed variables are considered measurements for underlying states (i.e., latent variables) that change together over time. However, state-space modeling has typically relied on continuous measurements, whereas psychological data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we develop a general estimation approach for state-space models with ordinal measurements, specifically focusing on a graded response model for Likert scale items. We evaluate the performance of our model and estimator against that of the commonly used \"linear approximation\" model, which treats ordinal measurements as though they are continuous. We find that our model resulted in unbiased estimates of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent bias.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1203-1229"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09984-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with technological advancements that make it simple to deploy study designs such as daily diary and ecological momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day), over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral processes. One powerful framework for analyzing IL data is state-space modeling, where observed variables are considered measurements for underlying states (i.e., latent variables) that change together over time. However, state-space modeling has typically relied on continuous measurements, whereas psychological data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we develop a general estimation approach for state-space models with ordinal measurements, specifically focusing on a graded response model for Likert scale items. We evaluate the performance of our model and estimator against that of the commonly used "linear approximation" model, which treats ordinal measurements as though they are continuous. We find that our model resulted in unbiased estimates of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent bias.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于密集纵向数据的序数结果状态空间模型。
密集纵向(IL)数据在心理科学中日益盛行,与此同时,技术的进步使日常日记和生态瞬间评估等研究设计的部署变得简单。纵向数据的特点是在一段时间内快速收集数据(每天收集 1 次以上),从而捕捉到心理和行为过程的动态变化。状态空间建模是分析 IL 数据的一个强大框架,其中观察变量被视为随时间变化的潜在状态(即潜在变量)的测量值。然而,状态空间建模通常依赖于连续测量,而心理数据通常采用李克特量表项目等序数测量形式。在本手稿中,我们为具有顺序测量的状态空间模型开发了一种通用估算方法,尤其侧重于李克特量表项目的分级反应模型。我们评估了我们的模型和估计方法与常用的 "线性近似 "模型的性能,后者将序数测量视为连续测量。我们发现,我们的模型对状态动态的估计没有偏差,而线性近似模型对状态动态的估计偏差很大。最后,我们提出了一种近似标准误差,称为切片标准误差,并证明在偏差一致的情况下,这些近似标准误差比真实标准误差更宽松(即更小)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Remarks from the Editor-in-Chief. Optimizing Large-Scale Educational Assessment with a "Divide-and-Conquer" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models. Ordinal Outcome State-Space Models for Intensive Longitudinal Data. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1