Quantum error mitigation

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reviews of Modern Physics Pub Date : 2023-12-13 DOI:10.1103/revmodphys.95.045005
Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, Thomas E. O’Brien
{"title":"Quantum error mitigation","authors":"Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, Thomas E. O’Brien","doi":"10.1103/revmodphys.95.045005","DOIUrl":null,"url":null,"abstract":"For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of <i>noise</i>: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"103 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.95.045005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors that occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of noisy intermediate-scale quantum machines one must seek to mitigate errors rather than completely eliminate them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and describes the hardware demonstrations achieved to date. Commonalities and limitations among the methods are identified, while mention is made of how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified, and the prospects for realizing mitigation-based devices that can deliver a quantum advantage with an impact on science and business are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子误差缓解
量子计算机要想成功解决现实世界中的问题,就必须应对噪声的挑战:基本物理元件中由于不需要或不完美的相互作用而产生的误差。从长远来看,量子容错理论可以提供答案,但在即将到来的中型量子机器噪声时代,我们必须设法减轻误差,而不是完全消除误差。这篇综述概述了已提出的各种量子误差缓解方法,评估了它们的原理功效,并介绍了迄今为止已实现的硬件演示。文章指出了这些方法的共性和局限性,同时提到了如何根据存在的主要噪声类型(包括算法错误)来选择缓解方法。报告还指出了该领域的未决问题,并讨论了实现基于缓解的设备的前景,这些设备可以带来量子优势,对科学和商业产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
期刊最新文献
Colloquium: Fracton matter Proton imaging of high-energy-density laboratory plasmas Colloquium: Gravitational form factors of the proton Colloquium: Miniature insect flight Quantum repeaters: From quantum networks to the quantum internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1