Adaptive Spatio-Temporal Graph Learning for Bus Station Profiling

IF 1.2 Q4 REMOTE SENSING ACM Transactions on Spatial Algorithms and Systems Pub Date : 2023-12-07 DOI:10.1145/3636459
Mingliang Hou, Feng Xia, Xin Chen, V. Saikrishna, Honglong Chen
{"title":"Adaptive Spatio-Temporal Graph Learning for Bus Station Profiling","authors":"Mingliang Hou, Feng Xia, Xin Chen, V. Saikrishna, Honglong Chen","doi":"10.1145/3636459","DOIUrl":null,"url":null,"abstract":"Understanding and managing public transportation systems require capturing complex spatio-temporal correlations within datasets. Existing studies often use predefined graphs in graph learning frameworks, neglecting shifted spatial and long-term temporal correlations, which are crucial in practical applications. To address these problems, we propose a novel bus station profiling framework to automatically infer the spatio-temporal correlations and capture the shifted spatial and long-term temporal correlations in the public transportation dataset. The proposed framework adopts and advances the graph learning structure through the following innovative ideas: (1) Designing an adaptive graph learning mechanism to capture the interactions between spatio-temporal correlations rather than relying on pre-defined graphs; (2) Modeling shifted correlation in shifted spatial graphs to learn fine-grained spatio-temporal features; (3) Employing self-attention mechanism to learn the long-term temporal correlations preserved in public transportation data. We conduct extensive experiments on three real-world datasets and exploit the learned profiles of stations for the station passenger flow prediction task. Experimental results demonstrate that the proposed framework outperforms all baselines under different settings and can produce meaningful bus station profiles.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3636459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and managing public transportation systems require capturing complex spatio-temporal correlations within datasets. Existing studies often use predefined graphs in graph learning frameworks, neglecting shifted spatial and long-term temporal correlations, which are crucial in practical applications. To address these problems, we propose a novel bus station profiling framework to automatically infer the spatio-temporal correlations and capture the shifted spatial and long-term temporal correlations in the public transportation dataset. The proposed framework adopts and advances the graph learning structure through the following innovative ideas: (1) Designing an adaptive graph learning mechanism to capture the interactions between spatio-temporal correlations rather than relying on pre-defined graphs; (2) Modeling shifted correlation in shifted spatial graphs to learn fine-grained spatio-temporal features; (3) Employing self-attention mechanism to learn the long-term temporal correlations preserved in public transportation data. We conduct extensive experiments on three real-world datasets and exploit the learned profiles of stations for the station passenger flow prediction task. Experimental results demonstrate that the proposed framework outperforms all baselines under different settings and can produce meaningful bus station profiles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于公交车站轮廓分析的自适应时空图学习
理解和管理公共交通系统需要在数据集中捕捉复杂的时空相关性。现有的研究通常在图学习框架中使用预定义的图,而忽略了在实际应用中至关重要的位移空间和长期时间相关性。为了解决这些问题,我们提出了一个新的公交站点分析框架,以自动推断时空相关性,并捕获公共交通数据集中的空间和长期时间相关性。该框架采用并推进了图学习结构,创新思路如下:(1)设计了一种自适应图学习机制,以捕捉时空相关性之间的相互作用,而不是依赖于预定义的图;(2)对移位空间图的移位相关性进行建模,学习细粒度的时空特征;(3)利用自注意机制学习公共交通数据中保存的长期时间相关性。我们在三个真实世界的数据集上进行了广泛的实验,并利用学习到的车站概况进行车站客流预测任务。实验结果表明,该框架在不同设置下优于所有基线,可以生成有意义的公交车站轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
期刊最新文献
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction (Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning Mobility Data Science: Perspectives and Challenges Graph Sampling for Map Comparison Latent Representation Learning for Geospatial Entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1