Forecasting Urban Sensory Values through Learning Attention-adjusted Graph Spatio-Temporal Networks

IF 1.2 Q4 REMOTE SENSING ACM Transactions on Spatial Algorithms and Systems Pub Date : 2023-12-04 DOI:10.1145/3635140
Yi-Ju Lu, Cheng-Te Li
{"title":"Forecasting Urban Sensory Values through Learning Attention-adjusted Graph Spatio-Temporal Networks","authors":"Yi-Ju Lu, Cheng-Te Li","doi":"10.1145/3635140","DOIUrl":null,"url":null,"abstract":"Forecasting spatio-temporal correlated time series of sensor values is crucial in urban applications, such as air pollution alert, biking resource management, and intelligent transportation systems. While recent advances exploit graph neural networks (GNN) to better learn spatial and temporal dependencies between sensors, they cannot model time-evolving spatio-temporal correlation (STC) between sensors, and require pre-defined graphs, which are neither always available nor totally reliable, and target at only a specific type of sensor data at one time. Moreover, since the form of time-series fluctuation is varied across sensors, a model needs to learn fluctuation modulation. To tackle these issues, in this work, we propose a novel GNN-based model, Attention-adjusted Graph Spatio-Temporal Network (AGSTN). In AGSTN, multi-graph convolution with sequential learning is developed to learn time-evolving STC. Fluctuation modulation is realized by a proposed attention adjustment mechanism. Experiments on three sensor data, air quality, bike demand, and traffic flow, exhibit that AGSTN outperforms the state-of-the-art methods.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3635140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting spatio-temporal correlated time series of sensor values is crucial in urban applications, such as air pollution alert, biking resource management, and intelligent transportation systems. While recent advances exploit graph neural networks (GNN) to better learn spatial and temporal dependencies between sensors, they cannot model time-evolving spatio-temporal correlation (STC) between sensors, and require pre-defined graphs, which are neither always available nor totally reliable, and target at only a specific type of sensor data at one time. Moreover, since the form of time-series fluctuation is varied across sensors, a model needs to learn fluctuation modulation. To tackle these issues, in this work, we propose a novel GNN-based model, Attention-adjusted Graph Spatio-Temporal Network (AGSTN). In AGSTN, multi-graph convolution with sequential learning is developed to learn time-evolving STC. Fluctuation modulation is realized by a proposed attention adjustment mechanism. Experiments on three sensor data, air quality, bike demand, and traffic flow, exhibit that AGSTN outperforms the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过学习注意力调整图时空网络预测城市感官值
预测传感器值的时空相关时间序列在城市应用中至关重要,如空气污染预警、自行车资源管理和智能交通系统。虽然最近的研究进展利用图神经网络(GNN)来更好地学习传感器之间的时空依赖关系,但它们不能对传感器之间的时间演化时空相关性(STC)进行建模,并且需要预先定义的图,这些图既不总是可用的,也不是完全可靠的,并且一次只针对特定类型的传感器数据。此外,由于时间序列波动的形式在传感器之间是不同的,因此模型需要学习波动调制。为了解决这些问题,在这项工作中,我们提出了一种新的基于gnn的模型,即注意力调整图时空网络(AGSTN)。在AGSTN中,采用时序学习的多图卷积来学习随时间变化的STC。通过提出的注意力调节机制实现波动调制。对空气质量、自行车需求和交通流量这三个传感器数据的实验表明,AGSTN优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
期刊最新文献
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction (Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning Mobility Data Science: Perspectives and Challenges Graph Sampling for Map Comparison Latent Representation Learning for Geospatial Entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1