Muhammed P.U. Haris , Samrana Kazim , Shahzada Ahmad
{"title":"Defect mitigation using multi-dentate ligand in FASnI3 perovskite films","authors":"Muhammed P.U. Haris , Samrana Kazim , Shahzada Ahmad","doi":"10.1016/j.cinorg.2023.100029","DOIUrl":null,"url":null,"abstract":"<div><div>Tin-based perovskite shows a more rational band gap, along with lower exciton-binding energy, and is noted to be suitable for solar cell fabrication. One of the open questions is their lower environmental stability due to poor crystallinity and surface inhomogeneity. We probed the impact of sulfur-containing multi-functional additives in FASnI<sub>3</sub> thin films, which interacts intensely with the Sn-based perovskites, and in turn, regulate the crystallization process to allow the preferential crystal growth along (h00) planes at the microscale. The single sulfur-containing ammonium cation (Isothio-Br) based perovskites showed improved crystallinity and microstructure as compared to the double sulfur-containing Disulfo-Cl molecule.</div></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"1 ","pages":"Article 100029"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949746923000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tin-based perovskite shows a more rational band gap, along with lower exciton-binding energy, and is noted to be suitable for solar cell fabrication. One of the open questions is their lower environmental stability due to poor crystallinity and surface inhomogeneity. We probed the impact of sulfur-containing multi-functional additives in FASnI3 thin films, which interacts intensely with the Sn-based perovskites, and in turn, regulate the crystallization process to allow the preferential crystal growth along (h00) planes at the microscale. The single sulfur-containing ammonium cation (Isothio-Br) based perovskites showed improved crystallinity and microstructure as compared to the double sulfur-containing Disulfo-Cl molecule.