Robust second-order stationary spatial blind source separation using generalized sign matrices

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2023-12-16 DOI:10.1016/j.spasta.2023.100803
Mika Sipilä , Christoph Muehlmann , Klaus Nordhausen , Sara Taskinen
{"title":"Robust second-order stationary spatial blind source separation using generalized sign matrices","authors":"Mika Sipilä ,&nbsp;Christoph Muehlmann ,&nbsp;Klaus Nordhausen ,&nbsp;Sara Taskinen","doi":"10.1016/j.spasta.2023.100803","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a spatial blind source separation model in which the observed multivariate spatial data are assumed to be a linear mixture of latent stationary spatially uncorrelated random fields. The objective is to recover an unknown mixing procedure as well as the latent random fields. Recently, spatial blind source separation methods that are based on the simultaneous diagonalization of two or more scatter matrices were proposed. In cases involving uncontaminated data, such methods can solve the blind source separation problem, however, in the presence of outlying observations, these methods perform poorly. We propose a robust blind source separation method that employs robust global and local covariance matrices based on generalized spatial signs in simultaneous diagonalization. Simulation studies are employed to illustrate the robustness and efficiency of the proposed methods in various scenarios.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000787/pdfft?md5=7adf41876821f26e81f0504b7c8941c2&pid=1-s2.0-S2211675323000787-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000787","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a spatial blind source separation model in which the observed multivariate spatial data are assumed to be a linear mixture of latent stationary spatially uncorrelated random fields. The objective is to recover an unknown mixing procedure as well as the latent random fields. Recently, spatial blind source separation methods that are based on the simultaneous diagonalization of two or more scatter matrices were proposed. In cases involving uncontaminated data, such methods can solve the blind source separation problem, however, in the presence of outlying observations, these methods perform poorly. We propose a robust blind source separation method that employs robust global and local covariance matrices based on generalized spatial signs in simultaneous diagonalization. Simulation studies are employed to illustrate the robustness and efficiency of the proposed methods in various scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用广义符号矩阵进行稳健的二阶静态空间盲源分离
考虑一个空间盲源分离模型,其中观测到的多变量空间数据被假定为潜在静止空间不相关随机场的线性混合物。目标是恢复未知的混合过程以及潜在随机场。最近,有人提出了基于两个或多个散点矩阵同时对角化的空间盲源分离方法。在涉及未受污染数据的情况下,这些方法可以解决盲源分离问题,但在存在离散观测数据的情况下,这些方法的性能较差。我们提出了一种稳健的盲源分离方法,该方法采用基于广义空间符号的稳健全局和局部协方差矩阵同时对角化。仿真研究说明了所提方法在各种情况下的鲁棒性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1