Measuring unit relevance and stability in hierarchical spatio-temporal clustering

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2025-01-13 DOI:10.1016/j.spasta.2025.100880
Roy Cerqueti , Raffaele Mattera
{"title":"Measuring unit relevance and stability in hierarchical spatio-temporal clustering","authors":"Roy Cerqueti ,&nbsp;Raffaele Mattera","doi":"10.1016/j.spasta.2025.100880","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the significance of individual data points within clustering structures is critical to effective data analysis. Traditional stability methods, while valuable, often overlook the nuanced impact of individual units, particularly in spatial contexts. In this paper, we explore the concept of unit relevance in clustering analysis, emphasizing its importance in capturing the spatio-temporal nature of the clustering problem. We propose a simple measure of unit relevance, the Unit Relevance Index (URI), and define an overall measure of clustering stability based on the aggregation of computed URIs. Considering two experiments on real datasets with geo-referenced time series, we find that the use of spatial constraints in the clustering task yields more stable results. Therefore, the inclusion of the spatial dimension can be seen as a way to stabilize the clustering.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100880"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000028","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the significance of individual data points within clustering structures is critical to effective data analysis. Traditional stability methods, while valuable, often overlook the nuanced impact of individual units, particularly in spatial contexts. In this paper, we explore the concept of unit relevance in clustering analysis, emphasizing its importance in capturing the spatio-temporal nature of the clustering problem. We propose a simple measure of unit relevance, the Unit Relevance Index (URI), and define an overall measure of clustering stability based on the aggregation of computed URIs. Considering two experiments on real datasets with geo-referenced time series, we find that the use of spatial constraints in the clustering task yields more stable results. Therefore, the inclusion of the spatial dimension can be seen as a way to stabilize the clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Clustering of compound events based on multivariate comonotonicity Measuring unit relevance and stability in hierarchical spatio-temporal clustering The Multifractal Gaussian Mixture Model for unsupervised segmentation of complex data sets Bias-corrected instrumental variable estimation for spatial autoregressive models with measurement errors An optimised rabies vaccination schedule for rural settlements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1